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EXECUTIVE SUMMARY
This report provides an overview of the soils and geophysical investigation performed to
characterize the foundation conditions for the Kealakaha Stream Bridge Replacement
project. The enhanced understanding of soil parameters will allow for incorporation of
soil-structure interaction in modeling of the bridge structure after future seismic events.
This report is based on a doctoral dissertation prepared by Shentang Wang in August
2006 under the direction of Professor Brandes. The dissertation research was performed
prior to construction of the Kealakaha Stream Bridge. At that time the bridge design
consisted of a single cell box-girder supported on two abutments and two piers, each with
sixteen drilled shafts as foundation. Subsequent to this research, value engineering by the
contractor changed the structural system to a multi-box girder over the piers and drop-in
I-girders in each of the three spans. Friction pendulum base isolation was used to separate
the superstructure from the substructure, resulting in a reduction of the number of drilled
shafts below each pier foundation to nine in place of sixteen. Even though these
changes to the structural system are significant, the results presented in this report can
still be used to model the response of this bridge structure during future earthquake
ground shaking.
This report also includes results of a geophysical investigation performed at the
Kealakaha Stream Bridge site in 2007 under the direction of Professors Brandes and
Robertson (Appendix F). The geophysical investigation was performed during the early
phases of work on the Kealakaha Stream Bridge.
Finally, Appendix G includes two publications stemming from this work. The first
appeared in the Summer 2006 edition of Hawaiian Connections, while the second is a
paper printed in the June 2011 edition of the ASCE Journal of Geotechnical and

Geoenvironmental Engineering.
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ABSTRACT

A new bridge has been proposed to replace the existing Kealakaha bridge on Route 19 on
the Island of Hawaii. This study is concerned with developing new modeling tools for
predicting the response of the new bridge to static and dynamic loads, including seismic
shaking. The bridge will span 220 meters, with the deck structure being curved and
sloped. In addition, the piers will be resting on opposite sides of a very deep gulch. As a
result, conventional two-dimensional modeling is considered inadequate and a full
three-dimensional approach to address the soil-structure interaction problem becomes
necessary. The difficulty with carrying out such a comprehensive modeling effort lies, in
part, on the enormous computational resources that are necessary to achieve even a
moderate degree of prediction detail. Thus a computationally efficient numerical
technique becomes essential. This study focuses on developing specific formulation
improvements that should provide substantial computational savings and improved
predictions for general finite and infinite element numerical codes. The platform that is
embraced in this study is the open source code OpenSees, which is rapidly becoming the
framework of choice in the earthquake engineering community for complex soil-structure
interaction problems. A number of advanced constitutive soil models and miscellaneous
coding improvements have been incorporated into OpenSees. It is expected that the

findings of this study should lead to a computational resource that will be able to provide



useful predictions for the new Kealakaha bridge and other similar bridge structures.

As part of this study, a generalized integration formulation is presented in tensorial form
for 3D elastoplastic problems. Two special cases of this generalized formulation, the well
known implicit and explicit integration schemes, are compared for four specific soil
models with regard to accuracy and efficiency. A 20-node reduced-integration brick
element is implemented for this purpose. The findings provide useful guidelines for

selection of particular integration schemes for nonlinear 3D problems.

The problem of soil-pile interaction, which is of integral importance to the Kealakaha
Bridge project, is addressed with respect to the parameters that affect the response under
lateral loading in cohesionless soil. To model the soil-pile interaction effect, a thin layer
of interface elements, which have the same material properties as the surrounding soils,
except for friction angle, were adopted. In addition, to improve the accuracy of the
computations, a new method has been developed to generate the soil reaction forces
along the pile. It was found that the coefficient of lateral earth pressure at rest, the unit
weight, and the friction angle of the soil have only a minor effect on the development of
lateral resistance. On the other hand, the initial Young’s modulus of the soil and the

stiffness of the pile play critical roles in determining the response of the pile.

Another important aspect of modeling with regard to the Kealakaha Bridge is the
selection of an appropriate set of boundary conditions in the far field. This plays a crucial

Vi



role for earthquake loading since such boundaries must be able to properly absorb the
incoming energy of seismic waves. An innovative and very efficient 3D semi-analytical
infinite element has been developed to model these far-field effects without virtually any
geometric limitations. The most important feature of the new infinite element is that it
includes an analytical solution in the infinite direction for wave problems. This provides
enormous savings in computation costs compared to conventional Gauss-Laguerre
quadrature integration. Another important feature of this infinite element is that it is able
to deal with body, shear and Rayleigh waves. Also, the need for large numbers of degrees
of freedom, which would otherwise be required for a fine mesh in the far-field, can be
reduced dramatically. By coupling of the far field with conventional 3D finite element
discretisation of the near-field, which would include pile, pile cap, the nearby soil, and
the bridge deck structure, it may now be feasible to model the whole of the Kealakaha
bridge using 3D analysis. Although all the relevant equations for the new infinite element
method are presented in this study, its implementation into OpenSees is left for a future

study.

Chapter 1 provides an overview of the study and Chapters 2 through 4 present the
detailed findings in manuscript form. Overall conclusions are presented in Chapter 5. The
Appendix includes miscellaneous formulation details and four related publications that

were prepared and published as part of this Dissertation.
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Chapter 1

Introduction

1.1 Background

The impetus for this study came from the need to provide state of the art static and
seismic soil-structure interaction modeling capabilities for the design and monitoring of
the planned Kealakaha bridge replacement. This bridge will be located on Highway 19, in
the Hamakua District of the Island of Hawaii. Modeling this structure (Figure 1.1) is a

Figure 1.1 Geometry of the Kealakaha Bridge (m)

challenging proposition if any reasonable amount of geometric and material detail is
desired. The bridge is curved, sloped and crosses a deep gulch with steep slopes on either
side. General soil conditions vary from basaltic residual soils near the surface, including

varying amounts of potentially high plasticity ash soils, to basaltic rock that decreases in



weathering with depth. The replacement structure will consist of a combination of box
and pre-tensioned girders resting on two piers and two abutments, which in turn will be
supported on piles. The bridge will span approximately 220 meters from one end to the
other. The site is subject to periodic earthquake shaking that can be quite intense. The
USGS estimates horizontal ground accelerations on the order of 0.6g with a 2%

probability of exceedance in 50 years.

These complexities rule out a conventional two-dimensional modeling approach and
instead require a full three-dimensional geometry. Furthermore, a relatively fine mesh is
necessary near the pier foundations to properly account for interaction between the
structural components and the surrounding soil. Taken together, these requirements place
a tremendous burden on computations. In fact, the level of modeling detail sought for this
particular bridge has not been reported for any comparable dynamic problem that
encompasses all structural and soil components, i.e. bridge deck, abutments, piers, piles
and non-homogeneous foundation soils. Comprehensive numerical predictions of this
type are still out of reach for most computational platforms. However, significant
progress is under way. On the forefront of computational earthquake engineering is the
development of the open source framework OpenSees (2004) for finite element analysis.
This code was initiated at the Pacific Earthquake Engineering Research Center with the
express purpose of providing a quantum leap in the ability to model complex problems
such as the one posed by the new Kealakaha bridge. However, much of the work has
centered on providing a core computational engine and specific provisions for structural
problems, with a few notable exceptions. This study makes substantial contributions to
the OpenSees code with regard to the implementation of advanced soil constitutive
models, evaluation of numerical integration strategies, investigation of simplified
soil-pile interaction, and development of advanced infinite elements for a proper
accounting of all seismic wave components propagating from the far field. The collective
purpose of these developments is to improve prediction accuracy and numerical
efficiency so that the Kealakaha replacement bridge can be analyzed in its entirety in the

near future.



1.2 OpenSees Structure

OpenSees is an object-oriented numerical framework coded in C++ language for finite
element analysis. Because of its open-source character, new components can be easily
added without the need to change existing code. Core components, which make sure new
components can be added and accommodated without difficulties, are in the form of
abstract base classes in C++. Components are classified into four main types of functions,
i.e. creation of finite element model, specification of analysis procedure, monitoring of
analysis, and output of results. Correspondingly, four types of objects, the ModelBuilder,

Domain, Analysis, and Recorder, are constructed in a typical analysis.

The ModelBuilder object is responsible for building the Node, Mass, Material, Section,
Element, LoadPattern, TimeSeries, Transformation, Block, and Constraint objects and
adding them to the Domain. The Domain is responsible for storing the objects created by
the ModelBuilder and providing access to these objects for the Analysis and Recorder.
The Analysis object can handle both static and transient nonlinear analysis and is
composed of the following component objects: the ConstraintHandler, DOF Numberer,
AnalysisModel, SolutionAlgorithm, Integrator, SystemOfEqn, and Solver. The Recorder
object records what the user specifies such as the displacement history at a node, stress or
strain history at a Gauss point in an element, and the global coordinates of the Gauss

points.

1.3 Contributions to OpenSees Code Development

In the present version of OpenSees, the available element types include the truss,
corotational truss, nonlinear beam-column, quadrilateral, solid-fluid fully coupled brick,
eight-node brick, and twenty-node brick elements. Among these elements, the nonlinear
beam-column and brick elements can be chosen for three-dimensional analysis. However,
the twenty seven-point Gauss integration scheme employed by the existing brick
elements is not efficient. A more efficient reduced-integration-point integration scheme
(Irons 1971) is implemented as part of this study by reducing the number of Gausspoints

from 27 to 14 without losing significant precision. The number of integration points can



be further reduced to 6 with only a slight cost in the precision. Eight-node and
twenty-node brick elements have been coded into OpenSees, with the number of
integration points specified by the user depending on particular needs of efficiency and

precision.

The corresponding three-dimensional material models in the present version include
elastic-isotropic,  Drucker-Prager, von-Mises, modified Cam-clay, rounded
Mohr-Coulomb, Mazari-Dafalias, pressure-dependent elastic, fluid-solid-porous material,
multi-yield-surface, pressure-dependent and pressure-independent multi-yield-surface
models. These models have been developed by different researchers and often require
their own type of brick elements. For example, the pressure-dependent and
pressure-independent multi-yield-surface material models use a solid-fluid fully coupled
element. In our study, the third stress-invariant is considered important. Therefore, a
generalized Cam-clay model, an extended Mohr-Coulomb model, a cap model (also used
in the code ABAQUS (2003)), and a modified Drucker-Prager model have been
formulated and coded into OpenSees. All these models take the third stress-invariant into
consideration. The formulation and derivations of Drucker-Prager, extended
Mohr-Coulomb, modified Cam-clay and general Cam-clay models can be found in
Appendix A. The associated or non-associated flow rule can be specified by users as
input options for these models. The cap model was used to analyze the 3D plastic

behavior of underwater slopes (Appendix C).

The initial stress states at integration points are critical for these constitutive models. This
is discussed in Chapter 3. However, the determination of the initial stress state is
problematic in the current version of OpenSees, at least for brick elements. In the current
version, the initial stress state is obtained through self-weight analysis by allowing a
single vertical degree of freedom for each node, except for nodes on bottom boundaries
of typical 3D problems where they are fixed in all three directions. But when the fixity of
nodes is changed for subsequent analysis, the restraint of the node is automatically
replaced with zero nodal force. This not only causes numerical problems if complex

elastoplastic constitutive models are employed, but also causes erroneous results



altogether. The code has been changed to fix this problem. The corrected version of
OpenSees can replace a restraint with the corresponding nodal resistance force as

necessary to maintain continued equilibrium.

In the current version of OpenSees, the material must be the same for all the loading
stages. Users can not change the material properties after the initial stress state is
obtained. Some elastoplastic constitutive models, for example the Cap model and the
Cam-clay model, can result in large displacements in the self-weight loading stage. Such
large displacements may be problematic for later stages of the analysis. For example, it
may cause displacement inconsistencies. In this study, changes have been instituted to
allow the user to change material properties midway through the modeling process. For
example, deformations during self-weight analysis can be kept to a minimum by
employing a 3D elastic constitutive model with large elastic stiffness constants.

Thereafter, the constitutive model can be changed to a more complex elastoplastic one.

1.4 Implementation of a Nonlinear Cyclic Soil Model

Although advanced constitutive models are appealing for dealing with large-scale static
loading problems, their performance can be less satisfactory when dealing with dynamic
problems due to the typically large number of material properties that need to be
considered. Computation costs are usually higher when compared with simpler cyclic
constitutive soil models. The nonlinear cyclic soil model presented by Finn et al. (1977),
and later modified by Liyanapathirana and Poulos (2002a; 2002b), was tested and
implemented in a Matlab code. This program was employed to examine the failure and
post-failure of submarine landslides and the cyclic behavior of an offshore fine sand. The
findings were published in two articles (Brandes and Wang 2004; Brandes, Seidman et al.
2005). These manuscripts are included in Appendices E and Appendix D.

1.5 Implementation of a Generalized Integration Scheme

The integration of elastoplastic constitutive relations at Gauss integration points is very

time consuming for complex material models when compared to simple elastic models.



In addition, the overall accuracy of the analysis is directly related to the accuracy of the
numerical algorithm used to integrate the constitutive relations. Beginning in the 1950’s,
Drucker and Prager developed the first formal framework for modeling inelastic behavior
of soils. Ever more complicated constitutive models have been proposed through the
years, including the following ones: von-Mises (1913), Drucker-Prager (Drucker, Gibson
et al. 1957), Lade and Duncan (Lade 1977), Mohr-Coulomb (Coulomb 1972), Lade
double hardening (Lade 1977), Cam-clay (Roscoe, Schofield et al. 1963), Matsuoka and
Nakai (1974), and various three-stress-invariant Cam-clay models (Alawaji, Runesson et
al. 1992; Peric and Huang 2003). The more complicated the constitutive model, the more
efficient the necessary integration strategy needs to be. Single-step explicit integration
was used early on for relatively simple J,-type models, i.e. the von-Mises and
Drucker-Prager models. It requires small loading steps and is only conditionally stable for

highly non-linear constitutive models (Bathe and Wilson 1976; Ortiz and Simo 1986).

Since the early 1990s, the implicit integration scheme has commanded more and more
attention due to its unconditional stability and its accuracy. But as the third stress
invariant is incorporated into the potential function in some of the more complex
constitutive models, evaluation of the corresponding numerical derivatives, which are
necessary for integration, becomes very time consuming. Therefore, most implicit
integration implementations are limited to simple non-associated potential functions to
avoid computing such derivatives (Borja 1991; Hofstetter, Simo et al. 1993; Simo and
Meschke 1993; Borst and Groen 2000; Luccioni, Pestana et al. 2000; Palazzo, Rosati et al.
2001; Rouainia and Wood 2001; Ahadi and Krenk 2003). Jeremic and Sture (1997) may
have been the first to propose a general purpose, fully implicit integration formula for
geomaterials. Three-invariant elastoplastic models can easily be coded into computer
programs since the related derivatives are expressed in analytical form. An even more
general scheme, the generalized midpoint integration scheme, which includes the explicit
and implicit schemes as particular cases, has also been proposed (Simo and Taylor 1986;
Fushi, Peric et al. 1992). But as is often the case with implicit integration schemes, their
implementation is usually limited to particular constitutive models. In this study,

midpoint integration has been formulated and incorporated into OpenSees in order to



accommodate a variety of soil models, including isotropic, anisotropic, simple kinematic
and mixed hardening models. The performance of two particular schemes, the explicit
and implicit integration algorithms, which are special cases of the midpoint procedure,
are evaluated in relation to four particular soil models. Guidelines are also provided for
choosing a particular integration scheme. A detailed discussion and example

computations using this generalized integration scheme are presented in Chapter 2.

1.6 The Role of Soil Nonlinearity in the Response of Piles Subjected to Lateral
Loading

The nonlinear character of soils plays an important role in lateral loading capacity,
whether for static or seismic problems. This aspect of soil-structure interaction is of
particular relevance to modeling of the Kealakaha Bridge. Chapter 3 evaluates the factors
that influence the behavior of a single pile in cohesionless soil under static lateral loading.
The three-stress-invariant extended Mohr-Coulomb model with non-associated flow rule
is employed to investigate the effect of the third stress invariant. The factors considered
include the coefficient of lateral earth pressure at rest, the unit weight of soil, the friction
angle, the initial Young’s modulus of the soil, and the diameter and stiffness of the pile.
Some of these factors are ignored by the simplified methods that are typically used in
engineering practice. For example, the ultimate lateral resistance formulas by Broms
(1964a) and Fleming et al. (1992) do not count on the coefficient of lateral earth pressure
at rest, the Young’s modulus of the soil and the stiffness of the pile, at least not directly.
The semi-analytical p-y analysis method (Reese, Cox et al. 1974), which is based on a
beam-on-elastic foundation analysis and experimentally-derived p-y curves, can account
for Young’s modulus of the soil and the stiffness of piles. In reality, the mechanism of
lateral pile resistance is complicated and the simplified methods make far-reaching
assumptions. Lateral pile resistance not only involves three dimensional effects, but also
involves nonlinear behavior of both soil and pile. The contrasting properties of the pile
and soil materials make it even more difficult to obtain a realistic analytical solution. To
evaluate the roles of all the factors mentioned above, the finite element method may be
the best choice. Chapter 3 shows that in some cases 3D finite element computations can

be at odds with predictions from the simplified methods.



1.7 Improved Far-Field Boundary Simulation for Soil-Structure Interaction

Problems

Soil-structure systems under dynamic loading have been studied extensively using the FE
method. Due to limitations in computational resources, most of these studies have been
performed in two dimensions and the materials have been assumed to be linearly elastic
or viscoelastic. In order to model structures embedded in a semi-infinite half space, the
typical approach has been to define a finite (bounded) region that includes for example a
pile, or piles, and the surrounding soil. This domain is analyzed using the FE method,
which can account for the nonlinear behavior of the materials in the time domain. The
far-field (unbounded) region is then represented by various artificial transmitting
boundaries (Lysmer and Kuhlemeyer 1969; Kausel 1974; Smith 1974; Kausel, Rosset et
al. 1975; White, Valliappan et al. 1977; Akiyoshi 1978), or it is modeled by the boundary
element (BE) method (Zienkiewicz, Kelly et al. 1977; Banerjee 1978; Kaynia and Kausel
1982; Beer 1986).

Since dynamic problems involve wave propagation and modification, any artificial
boundaries must be designed to absorb all out-going waves so that no reflection can occur
back into the inner domain. However, due to the complicated nature of wave propagation
and reflection, it is impossible to account properly for all the wave components generated
in the domain during random earthquake shaking. The BE method is a powerful tool to
model infinite three-dimensional space because it effectively reduces 3D geometries to
only two. In addition, radiation conditions at the infinite boundary can be satisfied
precisely by employing a fundamental solution. However, fundamental solutions are
unrealistic for problems where such solutions do not exist or where they are too
complicated (Wolf 2003). The need for storage of the entire global stiffness matrix, which
becomes nonsymmetric, further reduces the attractiveness of the BE method for

soil-pile-structure interaction problems.

Another method to model infinite boundaries is the newly-developed scaled boundary

finite element (SBFE) method. It is formulated to adopt the advantages of the FE and BE



methods for analysis of semi-infinite complex boundary value problems. (Zhang, Wegner
et al. 1999; Wolf and Song 2001; Doherty and Deeks 2003; Wolf 2003; Doherty and
Deeks 2004). By applying a particular analytical solution in the infinite direction, it not
only reduces the amount of spatial discretisation needed, but it can also satisfy boundary
conditions precisely at infinite locations. In addition, it does not require a fundamental
solution, which makes it much easier to implement. However, not all the integrants in the
infinite direction are integratable for wave propagation problems involving seismic
loading. In these cases, the numerical integration procedure, which takes much time, is
still required. The other limitation is that the SBFE uses time-consuming reverse Fourier
transformation to transform the dynamic stiffness matrix from the frequency domain to

the time domain for each element.

The infinite element (IE) method (Ungless 1973; Bettess 1977) deals with infinite
domains using finite elements. By applying special interpolation functions in the infinite
direction and traditional interpolation functions in the finite directions, the unbounded
problem can be solved within the frame work of the FE method. Recently, an analytical
frequency-dependent infinite element has been developed by Yun et al. (2000). This type
of infinite element uses three types of special shape functions to simplify discretisation of
multiple soil layers. It was later extended from the frequency domain to the time domain
by Kim and Yun (2000). Application of two-dimensional multi-wave infinite elements to
earthquake engineering problems in the time domain is reported by Choi et al. (2001).
Park et al. (2004) present a three-dimensional analytical infinite element in the frequency
domain based on the two-dimensional analytical frequency domain infinite elements
developed by Yun et al. (2000). However, this type of 3D infinite element can only
handle a curved interface between the bounded near-field and the unbounded far-field.
This study presents a new semi-analytical three dimensional infinite element, based on
the infinite elements mentioned above, for use in the time domain. This type of element
can deal with multi-wave components and with seismic soil-pile-structure interaction
problems in the time domain. The other advantage of this particular element is that it can
model the far field, regardless of the shape of the near field domain. A detailed

presentation of the corresponding element equations is presented in Chapter 4.



1.8 Validation of Implemented Formulations

The general midpoint integration formulations and the brick element with reduced
integration points that have been implemented in OpenSees were validated by comparing
the predictions with the theoretical solution for the MCC model under triaxial
compression loading. The plastic shear stress-strain curves in Figures 2.7a and 2.7b

reveal that the formulation predicts the theoretical results well.

In addition, the Extended Mohr-Coulomb model and the 8-node brick element with
reduced integration implemented into OpenSees were validated by comparing the
predictions against those obtained using the commercial code PLAXIS for a single pile in
cohesionless soil under lateral loading. Figure 1.2 indicates that the behavior of the pile
predicted by OpenSees is slightly stiffer than that obtained with PLAXIS. The main
reason is that the soil material is pressure-dependent in OpenSees, but is not in PLAXIS.

Nonetheless, the results are quite similar.

—_
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—*— PLAXIS prediction
—v— OpenSees prediction

500}

Lateral load on pile top (kN)

0 50 100 150
Lateral deflection of pile top (mm)

Figure 1.2  Pile behavior predicted by PLAXIS and OpenSees

1.9 Recommendations for Further Work
Reduced integration 8-node and 20-node brick elements for particular elastoplastic soil
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models have been developed and coded into the OpenSees. It should now be feasible to
carry out static soil-structure interaction analyses for the Kealakaha Bridge with an
acceptable level of detail using readily available computational platforms. However, for
even better performance of OpenSees, a more efficient interface element, as described in

(Harnau, Konyukhov et al. 2005) could be implemented.

In addition, the semi-analytical infinite element described in Chapter 4 needs to be coded
into OpenSees. The resulting formulation then needs to be verified, perhaps including
seismic analysis of a limited portion of the Kealakaha bridge replacement. This may for

example include one pier, pile cap, piles and surrounding soils.

To obtain the seismic load for 3D problems on the interface of the near-field and far-field
is still a challenging proposition, even with the help of commercial computer programs
such as Shake 2000. An alternative is to use the coupled FE and IE approach described in
Chapter 4 to generate the boundary loading by means of a free-field analysis.

11



Chapter 2

Generalized Integration Formulation and Its
Performance for Three-Invariant Elasto-Plastic

Geomaterials

Abstract

A generalized integration algorithm for three-invariant elastoplastic soil models is
described in tensorial form. This algorithm can be used in conjunction with isotropic,
kinematic, and mixed hardening materials. By selecting the value of a single integration
parameter, the well-known explicit and fully implicit formulations become two special
cases in this general scheme. The performances of explicit and fully implicit integration
are evaluated for the Drucker-Prager, extended Mohr-Coulomb, modified Cam-clay, and
general Cam-clay models. It is found that the explicit and fully implicit integration
provide similar levels of accuracy, but the former saves computational time. For
complicated elastoplastic soil models, such as three-invariant general Cam-clay model,

the advantages of explicit integration over fully implicit integration are discussed further.

Keywords: Generalized integration, explicit, fully implicit, Cam-clay

2.1 Introduction

Numerical integration of elastoplastic constitutive relationships at Gauss point level is
usually accomplished by some variant of the general Newton method. A multitude of
algorithms have been proposed, ranging from very simple explicit to fully implicit

schemes. Fully implicit integration, which is generally regarded as unconditionally stable
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(Ortiz and Popov 1985; Simo and Taylor 1986) and more accurate (Borst and Feenstra
1990; Schellekens and Borst 1990; Borst and Groen 2000) than explicit integration, is
more difficult to implement for complex soil materials that require consideration of three
dimensional stress space and general hardening and softening behavior. In this paper, we
present a generalized integration formulation for three-invariant isotropic elastoplastic
soil that includes explicit, partially implicit and fully implicit methods as special cases.
The formulation is based on the generalized midpoint rule procedure of Ortiz and Popov
(1985), but here we present the full set of incremental equations in tensorial form
necessary for implementation in a numerical framework. The general formulation is
consistent with a wide range of common soil elastoplastic constitutive relations,
providing first order accuracy, convergence and numerical stability. Performance of the
formulation is investigated with regard to four soil models of varying degrees of
complexity. They are the Drucker-Prager (DP), Extended Mohr-Coulomb (EMC),
General Cam-clay (GCC) and Modified Cam-clay (MCC) models. The corresponding
derivatives for each of the models are included. The generalized formulation has been
incorporated into the code OpenSees and its performance is evaluated with regard to
various integration options and the four soil models. It should be noted that particular
explicit and fully implicit tensorial versions of this general formulation have been
presented in the past in connection with specific soil models (Jeremic and Sture 1997;
Sloan, Abbo et al. 2001), but they generally do not permit a systematic comparison
between explicit and implicit methods based on a common parent formulation, nor do

they usually address more than one particular soil model at a time.

The performance of explicit versus implicit integration methods has been addressed in
many studies, but the conclusions with regard to accuracy, stability and convergence are
not always consistent. This is to be expected given the crucial role that size of increment,
shape of yield surface, and general complexity of the particular soil model play. For
example, Zhang (1995) reports that explicit integration runs into convergence difficulties
for his adopted J, elastoplasticity model when the strain increment is large. Potts and
Ganendra (1992) note that for the modified Cam clay model, use of the modified

Newton-Rhapson method in conjunction with the explicit integration algorithm proposed
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by Sloan (1987) leads to more accurate and efficient computations compared to the
implicit method. Sheng and Sloan (2001) report that for critical soil models the accuracy
of explicit integration is influenced by the size of the load increment, the type of flow
rule, and the overconsolidation ratio. Comparative studies on the performance of the two
integration strategies as applied to classical plasticity have also led to inconsistent
performance trends (Gens and Potts 1988; Borst and Feenstra 1990; Yamaguchi 1993;
Potts and Ganendra 1994). Borst and Feenstra (1990) found that the implicit method
performs better than the explicit method when material models have a non-constant
curvature in principal stress space. Gens and Potts (1988) investigated the performance of
explicit, modified Euler, mid-point, and fully implicit Runge-Kutta-England 4™ and 5™
order algorithms with regard to the modified Cam clay model. Their findings indicate that
the explicit and fully implicit methods yield the same level accuracy and that the explicit
scheme may be more advantageous than higher order methods when trying to achieve
moderate degrees of accuracy. Potts and Ganendra (1994) compare the implicit scheme to
an explicit method with substepping for the modified Cam clay soil model. For larger

strain increments, the substepping algorithm is more accurate than the implicit one.

As studies such as these indicate, it is difficult to draw broad conclusions on the merits of
one method over the other. The general formulation that is described in this article allows
us to revisit the performance of explicit and fully implicit schemes, in this case obtained
from the same parent formulation through selection of specific values of a single
algorithmic parameter. This new formulation has been compared to theoretical

predictions for MCC model and it appears to make reasonable predictions.
2.2 Elastic Prediction

Given a strain increment dg for a particular time increment Az, the stress and hardening

parameters can be determined by applying the Kuhn-Tucker loading unloading conditions

of plasticity:
f(apq,ki,a;q)ﬁo (0.1)
dA>0 (0.2)
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fdA =0 (0.3)
Where £ is the yield function, k'are a set of scalar hardening variables, cx"pq are a set of
tensor hardening variables, and A is a plastic multiplier that is related to the magnitude of
the plastic strain. If a Newton-type scheme is employed to solve the system of non-linear
equations at the global level, the consistent tangent stiffness tensor E%,,; must also be
known. At the beginning of a particular time increment, i.e. at time ¢ (point 4 in Figure
2.1), the stresses and hardening parameters can be expressed as ‘cy,, ‘K, and ‘a’,,,

respectively.

. red Ly i t,J
yield surface at t=t+4t¢ ("ova, 'k, ")

t+At

(O-PII) ki; af{‘l)

m(O'pq; ki, (Xp/q)
[(qu; kla aﬁq)

v » f (HAerq,HAlki, r+Arai{q ):0
f (Wapt/;tk i, 10(541):0

Figure 2.1 Elastic prediction and plastic correction paths.

The superscripts i and j vary between 1 and the number of hardening variables that need
to be considered. At the start of the increment, the Kuhn-Tucker condition f{'c,,, X,
’aqu)s F,1 1s assumed to have been satisfied previously. The allowable magnitude of F,,
depends on the system of units and the precision of the computation platform, but is
typically assumed in the range of 10” and 10"’ For the time increment A at hand, a set
of new elastic stresses can be predicted as:

de,, (0.4)

pred _t
Opg= Opg + E Pkl
where E,. is elastic stiffness tensor. If these predicted stresses satisfy the condition

A6, 'K, 'ayy)< Fror , an acceptable end condition has been achieved and no plastic
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correction phase is required. In this case, the updated set of variables at time #+A4¢ become

t+AtO})q:predO})q, t+Atki — tki, and t+Ataqu — tO(qu.
2.3 Plastic Corrections

If the stresses predicted by Equation (0.4) are such that the Kuhn-Tucker criteria are not
met, the material will have yielded and a new yield surface will have been established

At i
(opg, K'y a’pq), need

(Figure 2.1). A new set of stresses and hardening parameters, i.e.
to be determined corresponding to this new condition (say point D in Figure 2.1). Thus a
correction scheme needs to be used to arrive at D from the predicted state at B. A wide
range of methods can be considered. If explicit integration is adopted, a corrected state
can be obtained with a plastic flow direction evaluated either at the intersection point C
(Sloan 1987) or at the predicted point B (Borst and Feenstra 1990). On the other hand,
implicit integration uses either a plastic flow direction (and corresponding hardening
parameter gradients) computed at the midpoint between states C and D (Point E), or the

weighted average values at point C and point D (Ortiz and Popov 1985). Here we adopt

the midpoint integration scheme.

. : t+At j j
At the end of time 7+, the converged stresses and hardening parameters = (0 g, k', o'pg)

at point D should meet the following conditions:

t+AtO_pq _predo_pq + ﬂ“qukllan] — 0 (05)
o dk'
t+Atkz_tkz _/1m =0 0.6
(d/l) (0.6)
A : da’
HAta;j,q_ta,j;q —ﬂ,m( ;;piq) — 0 (07)
f(HAtO'pq,HAtk[,t+Ata;q) — O (08)

where "By, = "(3g/do), the superscript m refers to the midpoint £ and g is the plastic

Z+Atki t+At
s

potential. In these equations, the primary unknowns are %o, , o,y , and A.

Note that "By, "(dk'/d ), and "(dc’,,/d2) are secondary unknowns that are functions of
the primary unknowns and are evaluated at the stress state "(o,, K, o), which
int

represents the midpoint between the intersection stress state ("o ,,, k', @’»,) and the final
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t+At

stress state (o, K, ’,y). The midpoint stresses and hardening parameters can be

expressed as:

mo_pq — /nl‘o_pq(l _ﬂ) + t+AtO_pqﬂ (09)
"k =K1 - B+ TV B (0.10)
"o, =), (1= f)+ el B 0.11)

where [ is a general integration parameter (0</<1), the choice of which leads to various
integration schemes. "o, can be obtained explicitly by a procedure described below.
Although in Equations (0.5) through (0.8) the number of primary unknowns and
equations are the same, these equations can not be solved explicitly for most
three-invariant elastoplastic soil models. Solution requires use of the Newton-Raphson
iteration method. For convenience, all superscripts relating to time will be dropped from
here on. At the end of each iteration, the value of the unknowns will be denoted by &, ¥,
;. and A. The values at the midpoint will include the superscript, i.e. "(Gpg, K, @/py).

The elastic stiffness tensor E,. is taken as constant. The residuals of Equations (0.5)

through (0.8) at the end of each iteration become:

Rapq =0 = Opg * /lquklmBkl (0.12)
, S dk’
kK =k -k A" (—— 0.13
e (0.13)
, ‘ . do’
Ra;q = axjﬂq _taxjﬂq _/lm(d—jq) (0.14)
*f = f(o,.k.al,) (0.15)
Now differentiate Equation (0.5) with respect to A to obtain
dU m do—mn i dk ! j da){m
d;q + qukl Bkl + ﬂ“ﬂqukl(qumn dﬂ, + ZVVU E + ;N,'j]qmn d/ﬂt J = 0 (0 16)
where:
e (0.17)
rmt"oo,,00,,
_ 0’g
Wa=" ' 0.18
o= ook (0.18)
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_ g
oo, 00,

Next solve for doy,,/dA from Equation (0.16)

do,,
d /1 _Cpqmn E Pkl Vi
where:
1
Cpqmn =
5pm qn + ﬂ’ﬂqukl klmn

Vkl:mBkl + ApF, K

i

dk
Fk/ ZWkl ZN

J

The difference between Equation (0.8) and Equation (0.15) can be expressed as:

of do

df = ——— d}”:"dﬂ. +HdA = f-"f =-Ff

oo,,

where:

H=3

of dk'

of day,

+2

ok' dA

Substituting Equation (0.20) into Equation (0.24) and solving for dA yields:

R
dl = S
AmannklI/kl - H

J
8apq

di

where A=/ Oom, and My =

Differentiate Equations (0.12) through (0.14) for the current stress state:

d(*c,)=do, +dIE

dk'

Pkl

C qmnE qkl

"B, +AE .dB,

dk'

Pkl

d(*ky=dk' - A== 2d (")

dA

R _Jj J da
d(*al)=dal —d2

In Equation (0.28):

d(ﬁ)_m ' dB..

/

d/I

/1d(

P‘])
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For Cam-clay type hardening rules:

dk'

_ R
mi __dA’ g 0.31
nrs mB rs ( )

whereas for isotropic hardening with a hardening rule given by dk’=a{de’,de’ss)"?, we

can write:
dk'
i dA
= B, 0.32
(anan ) ( )

In the above, a; are a series of hardening constants that depend on the particular soil
model (Chen 1982) and d&” ), is the plastic strain increment tensor.

In Equation (0.29):

da oa’,
d(—-+ ”q) o ;;: b (0.33)
dqu:ﬂ( Ty + LWk + Z j (0.34)

Next, substitute Equation (0.34) into Equations (0.30) and (0.33). Also, substitute
Equations (0.30), (0.33), and (0.34) into Equations (0.27), (0.28) and (0.29) and solve
for dop, dk', and daqu:

do—mn qun |:d( G ) dﬂEqul mBkl iﬂEl’qk! {z VVkldkl + Z kimn n]m j:| (035)
Rpi m dkl m_ i J J J
d("k")+dA"( )+/1ﬂ M| L d 0 +ZW dk +2Nmnkldakl
dk = J# (0.36)
1-4p nleVkll
d("a,,)+ d;tm( % ) AP Z,Z;b [Tabk!do'kl + zWandkj + zNz{bkldaklj
da,, = < - s (0.37)
§am5bn - /lﬂ d l; abmn

rs

Equations (0.26), (0.35), (0.36), and (0.37) are the equations to be used for

Newton-Raphson iteration.

19



As pointed out by Ortiz and Popov (1985), when £ < 1/2 the stability of this integration
scheme is only conditionally stable. Luccioni et al. (2001) further point out that even
when 1/2 < B < 1, stability is only linear and can not be guaranteed for complex
constitutive models. When the Newton-Raphson iteration procedure diverges, a normal
return scheme, which has been used successfully by Nayak and Zienkiewicz (1972),
Owen and Hinton (1980), Sloan and Randolph (1982), and Sloan et al. (2001), can be
adopted. In this scheme /s set to zero and the hardening parameters are kept constant so
that only the stresses are allowed to vary. Two Newton-Raphson iterations are performed
so that stresses are forced back to the current yield surface along the normal to the yield
surface from the non-converged stress point:

do, =-dlA4, (0.38)
Applying a first order Taylor expansion to the residual of the yield function:

f="f+ 4,do, =0 (0.39)

and substituting Equation (0.38) into Equation (0.39), we can solve for dA:

_ S
di=—— (0.40)

pPqpPq

The correction to the stresses given by Equation (0.38) then becomes:

R
4
do,, =——Af/f" (0.41)

This type of normal correction makes the stress path follow the nearest path back to the
yield surface. The Kuhn-Tucker constraint conditions can be satisfied after several
iterations. But as indicated, this type of a normal correction does not account for the

change in hardening parameters. As a result, the yield surface remains in place.

In order to obtain the consistent tangent stiffness tensor, we can differentiate the

equilibrium Equation (0.5) with respect to total strain and solve for do,y/dgy,:

do o, do, i

dg o= pgmn Kqukl Bkl - ﬂ’ﬂqukl [];{lab d(c,' : + Fkl dg j (042)
do da

de @ = M iy =M iV ? (0.43)
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Now differentiate the consistency condition
df =0 (0.44)
with respect to total strain to obtain:

doy 94 _ (0.45)
de de

mn mn

Aab

Substitute Equation (0.43) into Equation (0.45) and solve for dA/dg,:

dﬂ” — AahMabmn (046)
de AM iV —H

mn

By substituting Equation (0.46) into Equation (0.43), we can obtain the elastic-plastic

consistent tangent stiffness tensor:

€ M V ArsM rsmn
Euimn = Mabmn - Ak H ‘ (047)
ArsM rskl Vkl -H

It should be pointed out that the elastoplastic stiffness tensor given by Equation (0.47) is
no longer symmetric for > 0.0 regardless of whether associated or non-associated flow

rule is adopted. As a result, the global stiffness matrix is also non-symmetric.

A flowchart indicating how the above equations have been implemented within a
Newton-Raphson scheme for correction of plastic stresses and hardening parameters is
shown in Table 2-1. However, note that the initial plastic correction is performed along
the normal to the potential surface at the intersection point of the stress path and the yield
surface (point C in Figure 2.1). A procedure is needed to find this intersection point. An
efficient explicit root finding method based on the Pegasus scheme of Dowell and Jarratt
(1972) can be adopted. At the end of time ¢, the yield function satisfies f{'Gy,, 'K, ‘a/,y)<
F,. During the interval from ¢ to ¢+A¢, the strain increment is A4g,, and the predicted
stress increment is Ao ,; = EpgmnA&nn. The root finding procedure becomes necessary if:

f(o,. k' el )<~Frol (0.48)

f(lo, +Ac

pq°

'K al)> Frol (0.49)
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Table 2-1  Plastic correction procedure.

1. Set Gy ="""Gyy, doyy =0, K ="K, dk' = 0, &,y ="', de’,; = 0, =0, Numlter = 0,
Maxlter = 15, MaxValue = 10%.
Calculate fiar=f{'Gpg, 'K, ''pg) and forea = gy K, 0,y).
If [fetart| < Flror

calculate "

0,4 by calling root finding procedure
else
calculate ™, by calling Pegasus unload-reload procedure.
2. Calculate "6y = (1 - f) X "Gpg + BX Cpgs "k = (1 - P x 'K + Bx K and "/, = (1 -
P)x "yt Bx
Set
My = O K =K, "o, =, A = 2, Numlter = Numlter + 1
3. Calculate “f=f{a,,, K, o)
If *f> MaxValue or Numlter > Maxlter,
go to step 8.
else
calculate dA using Equation (2.26).
4. Calculate Rapq, Rd, and *o/ g, Using Equations (2.12), (2.13), and (2.14), respectively.
5. Set d(*c,y) = - 0, d(*K) = - K, and d(*&’,,) = - *&’,,. Calculate the new values for
d oy, di’, and daqu using Equations (2.35), (2.36), and (2.37).
6. Update the values of the unknowns
Gy = ozd%q + doy, K = ol 4 K- &y = oldaqu +dalyy A= oldy L 11
7. Repeat steps 2-6 until the following criteria are satisfied. Then go to step 9.
1%l < TOLy, ||| < TOL,, ||*a || < TOLs, and |*f] < TOL,

8. Set #= 0 and perform steps 2-6 twice. Then perform the following calculations until

I* < TOL. Then go to step 9.

Ry i J old _ _ R __old
S=R g ks & pg), " Opg = Opgs AOpg = "f Apg / (ArsAys ), and Gpg =" Gpg + dTpq

t+At e

9. Calculate the elastic strain &%, = ‘€% + deay - ABa, the plastic strain,

gpab =

‘e? 4, + AB4p, and the consistent stiffness tensor E% 4, by means of Equation (2.47).
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In that case we need to find a scalar value @ which is larger than zero and less than 1 and
satisfies the function |f{' Gyt @A, 'K, '@’ pg)|<F 0. In other words, this entails finding
the single root of a non-linear, one-variable equation within a given root domain. The
initial root domain (ay, @) is such that =0 and @;=1. A series of Pegasus iterations are
carried out. If after a set maximum number of iterations the root is not found, the
remaining domain is divided into N equal size subdomains. If the values of f have a
different sign at the ends of a particular subdomain, the root must be within that interval.
The entire procedure is repeated until (a) the root is found, (b) the difference between ay
and @; is smaller than the precision of the computational platform, or (c) a prescribed
maximum number of iterations is reached. Note that the proposed Pegasus procedure
(Table 2-2) improves upon the one proposed by Sloan et al. (2001) since when fat o=y
is very small (and f'at o=w; is very large), the original scheme can run into convergence

problems, whereas the modified scheme in Table 2-2 does not.

Table 2-2  Root finding procedure.

1. Set =0 and =1, calculate fo = f{' G,y + AT, ol ng) and
fi = ot Aoy, K, '&yy).
2. Perform steps 3-4 PMAX times
3. Calculate w=m-(@1-a)fi/(fifo) and f= ' Gyt @AG,y, 'K, ' y).
4. If [fi<F o
terminate this procedure and go to step 12 with present value of w,
otherwise
if fxf;<0
setfi=1, o= o,
otherwise
set fo=1, = .
5.Seti=1.
6. Set w=ay+i(wi-an)/N and calculate £=f{' Gyt @AG,, 'K, 'ayy).
7. 1 [fi<F o

terminate this procedure and go to step 12 with present value of w,
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Table 2-2  (Continued) Root finding procedure.

otherwise
iff>Fy
set fi =1, Wmax= @, I = N+1,
otherwise
if >/,
set f0=_f, Omin= @.
8. Increase i by one; perform steps 6 and 7 until i<N.
9. Set @y = Bmin, D1 = Omax.
10. If |@; - an|<EPS or the number of iterations equals to lterMax, set @w= @y and
terminate this procedure and go to step 12 with present value of w.
11. Perform step 2-9 for IlterMax times.

int _t

As pointed out by Sloan et al. (2001) and others, when the stress point at time 7 is on the
yield surface, i.e. |f{'Gy, 'K, ‘@’py)|<Fi, the predicted stress path may pass through an
elastic zone first with (' o, +@Ac,, 'K, ‘o’ ,,)<-Fis and 0<@<1, and then end outside the
yield surface where f'Gy+A0,, 'K, 'a,))>Fiu (Figure 2.2). This occurs when the
direction of the predicted stress increment has a blunt angle y with the normal of the yield
surface, i.e.:
4,A0,

JA4,4, Ao, Ac,

rs rs

cosy = <—Tol (0.50)

where 70/ is a small positive tolerance. In this case, the intersection point of the predicted
stress path and the yield surface should be determined before proceeding with the plastic
correction phase. The specific process of finding this intersection point is different from
the root finding procedure described above because a narrowed root domain, which
contains the intersection point, must be determined first. Afterwards, the algorithm in

Table 2-2 can be used.
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Figure 2.2  Predicted unloading-reloading stress path.

Sloan et al. (2001) describe a Pegasus unloading scheme that appears to work
successfully in many cases. However, if the value of the yield function becomes very
large at the predicted state, i.e. the intersection point (Point C, Figure 2.1) is very close to
the starting location in relation to the predicted state, Sloan’s scheme can have a difficult
time finding the correct root domain. A modified Pegasus unload-reload algorithm can be
described as follows. Its main purpose is to find an elastic point where the yield function
has a value less than the negative tolerance, f/<-F,. Since at the start ]f(to;,q, Kl a)|<F 01,
the most likely location for the elastic point is within the immediate neighborhood of the
starting point. Therefore, we divide the strain increment into a number of sub-increments,
each increasing by a factor e (e > 1.0) from the previous one (Figure 2.2). When the value
of f'is very large at the predicted point, the smaller the sub-increment near the starting
point, the faster the procedure to find a stress point that is located within the elastic zone.
Of course, if f at the predicted point is small, and e is large, a larger number of
computational steps will be necessary. Our experience suggests an optimum of 1.2 for e.

The modified Pegasus unload-reload procedure is listed in Table 2-3.
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Table 2-3  Modified Pegasus unload-reload procedure.

1. Set Ac g = Epgmn A&mn, =0, @ 01a= 0, w1 = 1;
calculate fy = ' G,y + A, 'K, ' ,y) and fi = [ oo+ a1 A, 'K, '),
set 0 o1d=fo, f1 ola=f1.
2.Sete=1.2, so=(1-e)/(1- "°YP), i =1.
3. Set ax o= @1, do= oy - an, k= 1.
4. Setdw= dwy x s % ek'l, Ao,y = A0,y x do, 0= @ jat do,
calculate £=f('op+®AG by, 'Kk, ‘o))
5.1ff> Fiy
set @1 = @, fi oa=/f, k=NSUB+1,
otherwise
if f<-F
set ay = @, fo o1a=f, k=NSUB + 1, and i = [terMax + 1,
otherwise
set an o= .
6. Set k= k + 1; if k< NSUB, perform steps 4 and 5 again.
7.Seti=1i+1;ifi < lterMax, perform steps 3 to 6 again.
8. If fo ota < -Fiorand fi o1a> Fior,
set do= @ - @, *Gpy = 'Opg+ ATy, and Ac™ = dw x Ac,,. Take 'cy, as 'c,, and
Ac™, as Ao, to perform the root finding procedure and return &**“. Calculate o =

Local

at+ o x do.
Otherwise, set @ = ax.

int _t
9.7 0pg = Opg + WAC .
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2.4

Implementation of Formulation into OpenSees

The general integration scheme has been implemented into the code OpenSees (2004)

along with four commonly used soil constitutive models that vary in complexity and

versatility.

In hierarchical order, they are the Drucker-Prager (DP),

extended

Mohr-Coulomb (EMC), modified Cam-clay (MCC), and general Cam-clay (GCC)

models (Table 2-4). The Drucker-Prager model is the simplest one among the four and

considers only two stress invariants. The EMC model is a modification of the DP model

that takes into consideration the third stress invariant. As a result, the yield surface in

Table 2-4  General characteristics of selected elastoplastic models.
Drucker-Prager Extended Mohr- General Modified
Coulomb Cam-clay Cam-clay
Yield and 5 5 s
: f=ap+NOq- | f=q /MO + | f=q /M +
potential | f=ap+q-k
: k p(p-po) p(p-po)
functions
Stress
S p-q p-q, 0 p.q,0 P-q
invariants
Hardenin dpo = dpo =
® | da = cde? do = Cde” 7o 7o
rule vpodeli/(m-K) | vpode? i/ (m-k)
For triaxial a = 6sing/(3+sing), For triaxial
compression: k = 6ccos@/(3+sing), compression:
a=6sing/(3-sing) | M(6) = a/N(6), M=
k= 6ccosd/(3-sing) 6sing/(3-sing)
Parameters N(O) = [4(1-€*)cos* O+
For triaxial (2e-1)")/{2(1-¢*)cos O+ For triaxial
extension: (2e-1)[4(1-¢*)cos* O+ 5¢* — 4e]}, | extension:
a = 6sing/(3+sing) M=
k= 6ccos@/(3+sing) | e = (3+sing)/(3-sing) 6sing/(3+sing)
Constants | ¢ - friction angle; ¢ — cohesion; v - specific volume; m - compression

index; x - swelling index; C - hardening parameter.
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principal stress space is not circular. Of course, the two Cam-clay models have elliptical
yield surfaces in the p-g plane but differ from each other in terms of the exact functional
form used for the DP and EMC (Figure 2.3). The first and second order derivatives for
each of these models, necessary for implementation into a numerical code, are included

in tensorial form in the Appendix A.

yield surface of Drucker-Prager model and
modified Cam-clay model

yield surface of Drucker-Prager model and
rounded Mohr-Coulomb model

a or a/N(0)
q
M or M(6)
k or k/N(0)
Po p
yield surface of general Cam-clay model yield surface of modified Cam-clay model
and rounded Mohr-Coulomb model and general Cam-clay model
a) Deviatoric plane b) g-p plane

Figure 2.3  Yield surfaces for selected constitutive models.

The remainder of the article focuses on a comparison of performance among these four
models for two integration options. Explicit integration is obtained by setting = 0 and
implicit integration by letting = 1. Of particular interest is the efficiency of these two
schemes with regard to the four constitutive models. For this purpose, a hypothetical
cubical soil element consisting of a 20-node isoparametric brick element with 14 Irons
(1971) integration points is subjected to various triaxial loadings. Typical material

properties corresponding to a silty clay were assumed (Table 2-5).
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Table 2-5  Material properties and initial conditions for simulation runs.

Parameter Symbol Value

Unit weight y 14.50 kN/m’
Friction angle 1/ 28’
Poisson’s Ratio 7 0.33

Virgin compression index | A 0.019

Swell index m 0.006
Pre-consolidation stress Do 140 kPa
Initial void ratio e 0.65

2.5 Performance of Implicit and Explicit Integration

In each simulation, the soil element is first compressed isotropically to 140 kPa.
Thereafter, three stress paths are investigated (Figure 2.4). Path LP-1 corresponds to
deviatoric stress with Aoc,/A0.=0. For path LP-2, the stress ratio is kept at Ac;,/40.=0.5,
and for path LP-3 the stress ratio is again Ac;/40.:=0 but Ao: is negative. In each case, o
is kept constant at 140 kPa. The corresponding Lode angles for paths LP-1, LP-2, and
LP-3 are 0°, 30°, and 60°, respectively (Figure 2.4). One reason that paths LP-1 and LP-3
are chosen is that analytical derivatives of the Lode angles at 0° and 60° are not available

for the EMC and GCC models and they must instead be determined numerically. This

o1

Figure 2.4  Stress paths in the deviatoric plane.
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forces an evaluation of potential numerical errors. More importantly, these loading
schemes, albeit somewhat simplistic and limited, span the range of possible constant
stress ratio paths in the y-z plane. While plane stress loading results in three-dimensional
deformations, we dispense with the complexity of considering the effects of stress
changes in all directions for the time being. Use of a single element leads to equal
stresses and strains at all Gauss points and therefore avoids the influence of yielding in

neighboring elements that may unnecessarily cloud the resulting behavior.

The performance of explicit and implicit integration methods is discussed first with
respect to the DP and EMC models, which lack an ultimate failure condition and strain
hardening mechanism. Vertical loads of 460 kPa, 460 kPa, and -120 kPa are applied for
the LP-1, LP-2, and LP-3 paths, respectively. The deviatoric plastic stress-strain curves
are very similar for increments 15 through 1200, regardless of whether implicit or explicit
integration is used (Figure 2.5). The number of increments and the type of integration
method have virtually no effect on the overall predictions. The accuracy of integration
can be evaluated by defining a relative error measure:
\/apqapq £ k) + ;(a;qa;q)

Ep,=—F— ——— %100 (0.51)
\/ Gy 0+ 2K + (), a),)
i J

where 6y, K, and o/, are values at the end of a particular increment and ~ g, K, and
*aqu are the corresponding values at the end of that increment for the run with 1200 steps.
A representative set of finding is shown in Figure 2.6 for the LP-2 path. The error for
both explicit and implicit integration methods is very small and almost indistinguishable,
as was suggested in Figure 2.5. On the other hand, there are significant savings to be had
in choosing the explicit method over the implicit one for the EMC model. Of course, this
is particularly true as the number of sub-increment steps increases. Computational time
increases nearly linearly with number of steps. The ratio between the time used by
explicit integration and that used by implicit integration in the DP model is about 1.0
while it is only about 1/3 in the EMC model. The main reason that the implicit integration
procedure for the EMC moel is much more time consuming is that it involves evaluating

the second derivative of the third stress invariant, while the DP model does not.
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Figure 2.5  Stress-strain prediction for DP and EMC models.
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Figure 2.6  The relative errors and time consuming of explicit and implicit integrations

in DP and EMC models for LP-2 (6= 30") loading path.
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The MCC and GCC critical state models have well-defined failure and yield criteria and
are clearly superior to the DP and EMC models in terms of their ability to model real soil
behavior. However, as stress conditions approach failure, numerical instability may occur
unless very small loading steps are chosen. For the particular problem at hand, use of
1200 steps to achieve the final load results in more accurate predictions than using only
15 or 60 steps, regardless of whether implicit or explicit integration is used (Figure 2.7).
The integration formulations are also validated by comparing the finite element
predictions with the theoretical predictions using the MCC model (Muir Wood 1990)
under triaxial compression path LP-1 (Figures 2.7a and 2.7b).

As in DP and EMC model, Equation (0.51) is used here to calculate the relative errors.
Two loads, one Ac;=105 kPa, which is smaller than the failure load and the other one
Ao:=150 kPa, which is larger than failure load are chosen to test the performance of the
implicit and explicit integration with the number of increments increases. Under the first
load, both MCC model and GCC model do not fail but just yield (named yield loading).
The second loading is called failure loading. The relative errors of implicit integration are
larger than the explicit integration in most cases when the number of increments is small
(Figure 2.8). In addition, both integrations show the unstable character in both models.
But when the number of increments increases, the error of implicit integration decreases
faster than that of the explicit integration. For the yield loading of implicit integration, 20
steps are enough to obtain relatively small errors for both MCC and GCC model. For the
same level of accuracy, the explicit integration need about 50 steps. But when the time is

concerned, the implicit integration uses about 2~3 times of that used by explicit

. . 300 "
300 /LP—l 1200 steps LP-1 1200 steps
LP- 1 LP-1 Theoretgmomﬁon LP-1 Theorétical Solution
%\200* ; — 15 steps = — - 15 steps
o — 60 steps & — 60 steps
~ --- 1200 steps ; --- 1200 steps
S
LP-3
) s w ‘
0 5 10 15 5 10 15
g, (%) g, (%)
a) MCC model (explicit integration) b) MCC model (implicit integration)
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Figure 2.7  Stress-strain prediction for MCC and GCC models.

integration for the same level of accuracy of yield loading (Figure 2.8a and 8b). For the
failure loading (Figure 2.8c and 8d) implicit integration performs better in the MCC
model than in the GCC model. As the model gets more complicated, the instable
character of implicit integration shows up when the number of increments in small. More
loading steps are needed to arrive at a more accurate result for implicit integration for
GCC model. The time used by implicit integration is about 5 times that used by explicit
in GCC model for the same number of increments while this value is 4 in MCC model.

This fact implies that implicit integration is less competent than explicit integration in

complicated models at least for the problem investigated.
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Figure 2.8 The relative errors and time consuming of explicit and implicit integrations

in MCC and GCC models for LP-2 (6= 30") loading path.

2.6 Conclusions

The general form of an integration scheme was introduced and the performances of two

extreme cases of this integration, which are the well-known explicit and fully implicit

integration schemes, were studied. By applying to four elastoplastic soil models with

different level of complexity, the performances can be summarized as follows:

The explicit integration is much faster than the implicit integration.

The accuracy of explicit and implicit integrations is in the same level in the DP,
EMC models. The implicit integration is more accurate in MCC and GCC models
in a small range of number of increments if the stress state is not approaching
failure.

The explicit integration saves mo