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EXECUTIVE SUMMARY 

This report provides an overview of the soils and geophysical investigation performed to 

characterize the foundation conditions for the Kealakaha Stream Bridge Replacement 

project.  The enhanced understanding of soil parameters will allow for incorporation of 

soil-structure interaction in modeling of the bridge structure after future seismic events. 

This report is based on a doctoral dissertation prepared by Shentang Wang in August 

2006 under the direction of Professor Brandes. The dissertation research was performed 

prior to construction of the Kealakaha Stream Bridge. At that time the bridge design 

consisted of a single cell box-girder supported on two abutments and two piers, each with 

sixteen drilled shafts as foundation. Subsequent to this research, value engineering by the 

contractor changed the structural system to a multi-box girder over the piers and drop-in 

I-girders in each of the three spans. Friction pendulum base isolation was used to separate 

the superstructure from the substructure, resulting in a reduction of the number of drilled 

shafts below each pier foundation to nine in place of sixteen.  Even though these 

changes to the structural system are significant, the results presented in this report can 

still be used to model the response of this bridge structure during future earthquake 

ground shaking. 

This report also includes results of a geophysical investigation performed at the 

Kealakaha Stream Bridge site in 2007 under the direction of Professors Brandes and 

Robertson (Appendix F). The geophysical investigation was performed during the early 

phases of work on the Kealakaha Stream Bridge. 

Finally, Appendix G includes two publications stemming from this work. The first 

appeared in the Summer 2006 edition of Hawaiian Connections, while the second is a 

paper printed in the June 2011 edition of the ASCE Journal of Geotechnical and 

Geoenvironmental Engineering. 
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ABSTRACT 

 

A new bridge has been proposed to replace the existing Kealakaha bridge on Route 19 on 

the Island of Hawaii. This study is concerned with developing new modeling tools for 

predicting the response of the new bridge to static and dynamic loads, including seismic 

shaking. The bridge will span 220 meters, with the deck structure being curved and 

sloped. In addition, the piers will be resting on opposite sides of a very deep gulch. As a 

result, conventional two-dimensional modeling is considered inadequate and a full 

three-dimensional approach to address the soil-structure interaction problem becomes 

necessary. The difficulty with carrying out such a comprehensive modeling effort lies, in 

part, on the enormous computational resources that are necessary to achieve even a 

moderate degree of prediction detail. Thus a computationally efficient numerical 

technique becomes essential. This study focuses on developing specific formulation 

improvements that should provide substantial computational savings and improved 

predictions for general finite and infinite element numerical codes. The platform that is 

embraced in this study is the open source code OpenSees, which is rapidly becoming the 

framework of choice in the earthquake engineering community for complex soil-structure 

interaction problems. A number of advanced constitutive soil models and miscellaneous 

coding improvements have been incorporated into OpenSees. It is expected that the 

findings of this study should lead to a computational resource that will be able to provide 
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useful predictions for the new Kealakaha bridge and other similar bridge structures. 

As part of this study, a generalized integration formulation is presented in tensorial form 

for 3D elastoplastic problems. Two special cases of this generalized formulation, the well 

known implicit and explicit integration schemes, are compared for four specific soil 

models with regard to accuracy and efficiency. A 20-node reduced-integration brick 

element is implemented for this purpose. The findings provide useful guidelines for 

selection of particular integration schemes for nonlinear 3D problems.  

 

The problem of soil-pile interaction, which is of integral importance to the Kealakaha 

Bridge project, is addressed with respect to the parameters that affect the response under 

lateral loading in cohesionless soil. To model the soil-pile interaction effect, a thin layer 

of interface elements, which have the same material properties as the surrounding soils, 

except for friction angle, were adopted. In addition, to improve the accuracy of the 

computations, a new method has been developed to generate the soil reaction forces 

along the pile. It was found that the coefficient of lateral earth pressure at rest, the unit 

weight, and the friction angle of the soil have only a minor effect on the development of 

lateral resistance. On the other hand, the initial Young’s modulus of the soil and the 

stiffness of the pile play critical roles in determining the response of the pile.  

 

Another important aspect of modeling with regard to the Kealakaha Bridge is the 

selection of an appropriate set of boundary conditions in the far field. This plays a crucial 
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role for earthquake loading since such boundaries must be able to properly absorb the 

incoming energy of seismic waves. An innovative and very efficient 3D semi-analytical 

infinite element has been developed to model these far-field effects without virtually any 

geometric limitations. The most important feature of the new infinite element is that it 

includes an analytical solution in the infinite direction for wave problems. This provides 

enormous savings in computation costs compared to conventional Gauss-Laguerre 

quadrature integration. Another important feature of this infinite element is that it is able 

to deal with body, shear and Rayleigh waves. Also, the need for large numbers of degrees 

of freedom, which would otherwise be required for a fine mesh in the far-field, can be 

reduced dramatically. By coupling of the far field with conventional 3D finite element 

discretisation of the near-field, which would include pile, pile cap, the nearby soil, and 

the bridge deck structure, it may now be feasible to model the whole of the Kealakaha 

bridge using 3D analysis. Although all the relevant equations for the new infinite element 

method are presented in this study, its implementation into OpenSees is left for a future 

study.  

 

Chapter 1 provides an overview of the study and Chapters 2 through 4 present the 

detailed findings in manuscript form. Overall conclusions are presented in Chapter 5. The 

Appendix includes miscellaneous formulation details and four related publications that 

were prepared and published as part of this Dissertation. 
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Chapter 1  
 

 

Introduction 

 

1.1 Background 

The impetus for this study came from the need to provide state of the art static and 

seismic soil-structure interaction modeling capabilities for the design and monitoring of 

the planned Kealakaha bridge replacement. This bridge will be located on Highway 19, in 

the Hamakua District of the Island of Hawaii. Modeling this structure (Figure 1.1) is a  
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Figure 1.1 Geometry of the Kealakaha Bridge (m) 

 

challenging proposition if any reasonable amount of geometric and material detail is 

desired. The bridge is curved, sloped and crosses a deep gulch with steep slopes on either 

side. General soil conditions vary from basaltic residual soils near the surface, including 

varying amounts of potentially high plasticity ash soils, to basaltic rock that decreases in 
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weathering with depth. The replacement structure will consist of a combination of box 

and pre-tensioned girders resting on two piers and two abutments, which in turn will be 

supported on piles. The bridge will span approximately 220 meters from one end to the 

other. The site is subject to periodic earthquake shaking that can be quite intense. The 

USGS estimates horizontal ground accelerations on the order of 0.6g with a 2% 

probability of exceedance in 50 years. 

 

These complexities rule out a conventional two-dimensional modeling approach and 

instead require a full three-dimensional geometry. Furthermore, a relatively fine mesh is 

necessary near the pier foundations to properly account for interaction between the 

structural components and the surrounding soil. Taken together, these requirements place 

a tremendous burden on computations. In fact, the level of modeling detail sought for this 

particular bridge has not been reported for any comparable dynamic problem that 

encompasses all structural and soil components, i.e. bridge deck, abutments, piers, piles 

and non-homogeneous foundation soils. Comprehensive numerical predictions of this 

type are still out of reach for most computational platforms. However, significant 

progress is under way. On the forefront of computational earthquake engineering is the 

development of the open source framework OpenSees (2004) for finite element analysis. 

This code was initiated at the Pacific Earthquake Engineering Research Center with the 

express purpose of providing a quantum leap in the ability to model complex problems 

such as the one posed by the new Kealakaha bridge. However, much of the work has 

centered on providing a core computational engine and specific provisions for structural 

problems, with a few notable exceptions. This study makes substantial contributions to 

the OpenSees code with regard to the implementation of advanced soil constitutive 

models, evaluation of numerical integration strategies, investigation of simplified 

soil-pile interaction, and development of advanced infinite elements for a proper 

accounting of all seismic wave components propagating from the far field. The collective 

purpose of these developments is to improve prediction accuracy and numerical 

efficiency so that the Kealakaha replacement bridge can be analyzed in its entirety in the 

near future. 
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1.2 OpenSees Structure 

OpenSees is an object-oriented numerical framework coded in C++ language for finite 

element analysis. Because of its open-source character, new components can be easily 

added without the need to change existing code. Core components, which make sure new 

components can be added and accommodated without difficulties, are in the form of 

abstract base classes in C++. Components are classified into four main types of functions, 

i.e. creation of finite element model, specification of analysis procedure, monitoring of 

analysis, and output of results. Correspondingly, four types of objects, the ModelBuilder, 

Domain, Analysis, and Recorder, are constructed in a typical analysis.  

 

The ModelBuilder object is responsible for building the Node, Mass, Material, Section, 

Element, LoadPattern, TimeSeries, Transformation, Block, and Constraint objects and 

adding them to the Domain. The Domain is responsible for storing the objects created by 

the ModelBuilder and providing access to these objects for the Analysis and Recorder. 

The Analysis object can handle both static and transient nonlinear analysis and is 

composed of the following component objects: the ConstraintHandler, DOF_Numberer, 

AnalysisModel, SolutionAlgorithm, Integrator, SystemOfEqn, and Solver. The Recorder 

object records what the user specifies such as the displacement history at a node, stress or 

strain history at a Gauss point in an element, and the global coordinates of the Gauss 

points.   

1.3 Contributions to OpenSees Code Development 

In the present version of OpenSees, the available element types include the truss, 

corotational truss, nonlinear beam-column, quadrilateral, solid-fluid fully coupled brick, 

eight-node brick, and twenty-node brick elements. Among these elements, the nonlinear 

beam-column and brick elements can be chosen for three-dimensional analysis. However, 

the twenty seven-point Gauss integration scheme employed by the existing brick 

elements is not efficient. A more efficient reduced-integration-point integration scheme 

(Irons 1971) is implemented as part of this study by reducing the number of Gausspoints 

from 27 to 14 without losing significant precision. The number of integration points can 
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be further reduced to 6 with only a slight cost in the precision. Eight-node and 

twenty-node brick elements have been coded into OpenSees, with the number of 

integration points specified by the user depending on particular needs of efficiency and 

precision.  

 

The corresponding three-dimensional material models in the present version include 

elastic-isotropic, Drucker-Prager, von-Mises, modified Cam-clay, rounded 

Mohr-Coulomb, Mazari-Dafalias, pressure-dependent elastic, fluid-solid-porous material, 

multi-yield-surface, pressure-dependent and pressure-independent multi-yield-surface 

models. These models have been developed by different researchers and often require 

their own type of brick elements. For example, the pressure-dependent and 

pressure-independent multi-yield-surface material models use a solid-fluid fully coupled 

element. In our study, the third stress-invariant is considered important. Therefore, a 

generalized Cam-clay model, an extended Mohr-Coulomb model, a cap model (also used 

in the code ABAQUS (2003)), and a modified Drucker-Prager model have been 

formulated and coded into OpenSees. All these models take the third stress-invariant into 

consideration. The formulation and derivations of Drucker-Prager, extended 

Mohr-Coulomb, modified Cam-clay and general Cam-clay models can be found in 

Appendix A. The associated or non-associated flow rule can be specified by users as 

input options for these models. The cap model was used to analyze the 3D plastic 

behavior of underwater slopes (Appendix C). 

 

The initial stress states at integration points are critical for these constitutive models. This 

is discussed in Chapter 3. However, the determination of the initial stress state is 

problematic in the current version of OpenSees, at least for brick elements. In the current 

version, the initial stress state is obtained through self-weight analysis by allowing a 

single vertical degree of freedom for each node, except for nodes on bottom boundaries 

of typical 3D problems where they are fixed in all three directions. But when the fixity of 

nodes is changed for subsequent analysis, the restraint of the node is automatically 

replaced with zero nodal force. This not only causes numerical problems if complex 

elastoplastic constitutive models are employed, but also causes erroneous results 



 5

altogether. The code has been changed to fix this problem. The corrected version of 

OpenSees can replace a restraint with the corresponding nodal resistance force as 

necessary to maintain continued equilibrium. 

 

In the current version of OpenSees, the material must be the same for all the loading 

stages. Users can not change the material properties after the initial stress state is 

obtained. Some elastoplastic constitutive models, for example the Cap model and the 

Cam-clay model, can result in large displacements in the self-weight loading stage. Such 

large displacements may be problematic for later stages of the analysis. For example, it 

may cause displacement inconsistencies. In this study, changes have been instituted to 

allow the user to change material properties midway through the modeling process. For 

example, deformations during self-weight analysis can be kept to a minimum by 

employing a 3D elastic constitutive model with large elastic stiffness constants. 

Thereafter, the constitutive model can be changed to a more complex elastoplastic one.  

1.4 Implementation of a Nonlinear Cyclic Soil Model 

Although advanced constitutive models are appealing for dealing with large-scale static 

loading problems, their performance can be less satisfactory when dealing with dynamic 

problems due to the typically large number of material properties that need to be 

considered. Computation costs are usually higher when compared with simpler cyclic 

constitutive soil models. The nonlinear cyclic soil model presented by Finn et al. (1977), 

and later modified by Liyanapathirana and Poulos (2002a; 2002b), was tested and 

implemented in a Matlab code. This program was employed to examine the failure and 

post-failure of submarine landslides and the cyclic behavior of an offshore fine sand. The 

findings were published in two articles (Brandes and Wang 2004; Brandes, Seidman et al. 

2005). These manuscripts are included in Appendices E and Appendix D.  

1.5 Implementation of a Generalized Integration Scheme 

The integration of elastoplastic constitutive relations at Gauss integration points is very 

time consuming for complex material models when compared to simple elastic models. 
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In addition, the overall accuracy of the analysis is directly related to the accuracy of the 

numerical algorithm used to integrate the constitutive relations. Beginning in the 1950’s, 

Drucker and Prager developed the first formal framework for modeling inelastic behavior 

of soils. Ever more complicated constitutive models have been proposed through the 

years, including the following ones: von-Mises (1913), Drucker-Prager (Drucker, Gibson 

et al. 1957), Lade and Duncan (Lade 1977), Mohr-Coulomb (Coulomb 1972), Lade 

double hardening (Lade 1977), Cam-clay (Roscoe, Schofield et al. 1963), Matsuoka and 

Nakai (1974), and various three-stress-invariant Cam-clay models (Alawaji, Runesson et 

al. 1992; Peric and Huang 2003). The more complicated the constitutive model, the more 

efficient the necessary integration strategy needs to be. Single-step explicit integration 

was used early on for relatively simple J2-type models, i.e. the von-Mises and 

Drucker-Prager models. It requires small loading steps and is only conditionally stable for 

highly non-linear constitutive models (Bathe and Wilson 1976; Ortiz and Simo 1986).  

 

Since the early 1990s, the implicit integration scheme has commanded more and more 

attention due to its unconditional stability and its accuracy. But as the third stress 

invariant is incorporated into the potential function in some of the more complex 

constitutive models, evaluation of the corresponding numerical derivatives, which are 

necessary for integration, becomes very time consuming. Therefore, most implicit 

integration implementations are limited to simple non-associated potential functions to 

avoid computing such derivatives (Borja 1991; Hofstetter, Simo et al. 1993; Simo and 

Meschke 1993; Borst and Groen 2000; Luccioni, Pestana et al. 2000; Palazzo, Rosati et al. 

2001; Rouainia and Wood 2001; Ahadi and Krenk 2003). Jeremic and Sture (1997) may 

have been the first to propose a general purpose, fully implicit integration formula for 

geomaterials. Three-invariant elastoplastic models can easily be coded into computer 

programs since the related derivatives are expressed in analytical form. An even more 

general scheme, the generalized midpoint integration scheme, which includes the explicit 

and implicit schemes as particular cases, has also been proposed (Simo and Taylor 1986; 

Fushi, Peric et al. 1992). But as is often the case with implicit integration schemes, their 

implementation is usually limited to particular constitutive models. In this study, 

midpoint integration has been formulated and incorporated into OpenSees in order to 
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accommodate a variety of soil models, including isotropic, anisotropic, simple kinematic 

and mixed hardening models. The performance of two particular schemes, the explicit 

and implicit integration algorithms, which are special cases of the midpoint procedure, 

are evaluated in relation to four particular soil models. Guidelines are also provided for 

choosing a particular integration scheme. A detailed discussion and example 

computations using this generalized integration scheme are presented in Chapter 2. 

1.6 The Role of Soil Nonlinearity in the Response of Piles Subjected to Lateral 

Loading 

The nonlinear character of soils plays an important role in lateral loading capacity, 

whether for static or seismic problems. This aspect of soil-structure interaction is of 

particular relevance to modeling of the Kealakaha Bridge. Chapter 3 evaluates the factors 

that influence the behavior of a single pile in cohesionless soil under static lateral loading. 

The three-stress-invariant extended Mohr-Coulomb model with non-associated flow rule 

is employed to investigate the effect of the third stress invariant. The factors considered 

include the coefficient of lateral earth pressure at rest, the unit weight of soil, the friction 

angle, the initial Young’s modulus of the soil, and the diameter and stiffness of the pile. 

Some of these factors are ignored by the simplified methods that are typically used in 

engineering practice. For example, the ultimate lateral resistance formulas by Broms 

(1964a) and Fleming et al. (1992) do not count on the coefficient of lateral earth pressure 

at rest, the Young’s modulus of the soil and the stiffness of the pile, at least not directly. 

The semi-analytical p-y analysis method (Reese, Cox et al. 1974), which is based on a 

beam-on-elastic foundation analysis and experimentally-derived p-y curves, can account 

for Young’s modulus of the soil and the stiffness of piles. In reality, the mechanism of 

lateral pile resistance is complicated and the simplified methods make far-reaching 

assumptions. Lateral pile resistance not only involves three dimensional effects, but also 

involves nonlinear behavior of both soil and pile. The contrasting properties of the pile 

and soil materials make it even more difficult to obtain a realistic analytical solution. To 

evaluate the roles of all the factors mentioned above, the finite element method may be 

the best choice. Chapter 3 shows that in some cases 3D finite element computations can 

be at odds with predictions from the simplified methods.  
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1.7 Improved Far-Field Boundary Simulation for Soil-Structure Interaction 

Problems  

Soil-structure systems under dynamic loading have been studied extensively using the FE 

method. Due to limitations in computational resources, most of these studies have been 

performed in two dimensions and the materials have been assumed to be linearly elastic 

or viscoelastic. In order to model structures embedded in a semi-infinite half space, the 

typical approach has been to define a finite (bounded) region that includes for example a 

pile, or piles, and the surrounding soil. This domain is analyzed using the FE method, 

which can account for the nonlinear behavior of the materials in the time domain. The 

far-field (unbounded) region is then represented by various artificial transmitting 

boundaries (Lysmer and Kuhlemeyer 1969; Kausel 1974; Smith 1974; Kausel, Rosset et 

al. 1975; White, Valliappan et al. 1977; Akiyoshi 1978), or it is modeled by the boundary 

element (BE) method (Zienkiewicz, Kelly et al. 1977; Banerjee 1978; Kaynia and Kausel 

1982; Beer 1986).  

 

Since dynamic problems involve wave propagation and modification, any artificial 

boundaries must be designed to absorb all out-going waves so that no reflection can occur 

back into the inner domain. However, due to the complicated nature of wave propagation 

and reflection, it is impossible to account properly for all the wave components generated 

in the domain during random earthquake shaking. The BE method is a powerful tool to 

model infinite three-dimensional space because it effectively reduces 3D geometries to 

only two. In addition, radiation conditions at the infinite boundary can be satisfied 

precisely by employing a fundamental solution. However, fundamental solutions are 

unrealistic for problems where such solutions do not exist or where they are too 

complicated (Wolf 2003). The need for storage of the entire global stiffness matrix, which 

becomes nonsymmetric, further reduces the attractiveness of the BE method for 

soil-pile-structure interaction problems.  

 

Another method to model infinite boundaries is the newly-developed scaled boundary 

finite element (SBFE) method. It is formulated to adopt the advantages of the FE and BE 
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methods for analysis of semi-infinite complex boundary value problems. (Zhang, Wegner 

et al. 1999; Wolf and Song 2001; Doherty and Deeks 2003; Wolf 2003; Doherty and 

Deeks 2004). By applying a particular analytical solution in the infinite direction, it not 

only reduces the amount of spatial discretisation needed, but it can also satisfy boundary 

conditions precisely at infinite locations. In addition, it does not require a fundamental 

solution, which makes it much easier to implement. However, not all the integrants in the 

infinite direction are integratable for wave propagation problems involving seismic 

loading. In these cases, the numerical integration procedure, which takes much time, is 

still required. The other limitation is that the SBFE uses time-consuming reverse Fourier 

transformation to transform the dynamic stiffness matrix from the frequency domain to 

the time domain for each element.  

 

The infinite element (IE) method (Ungless 1973; Bettess 1977) deals with infinite 

domains using finite elements. By applying special interpolation functions in the infinite 

direction and traditional interpolation functions in the finite directions, the unbounded 

problem can be solved within the frame work of the FE method. Recently, an analytical 

frequency-dependent infinite element has been developed by Yun et al. (2000). This type 

of infinite element uses three types of special shape functions to simplify discretisation of 

multiple soil layers. It was later extended from the frequency domain to the time domain 

by Kim and Yun (2000). Application of two-dimensional multi-wave infinite elements to 

earthquake engineering problems in the time domain is reported by Choi et al. (2001). 

Park et al. (2004) present a three-dimensional analytical infinite element in the frequency 

domain based on the two-dimensional analytical frequency domain infinite elements 

developed by Yun et al. (2000). However, this type of 3D infinite element can only 

handle a curved interface between the bounded near-field and the unbounded far-field. 

This study presents a new semi-analytical three dimensional infinite element, based on 

the infinite elements mentioned above, for use in the time domain. This type of element 

can deal with multi-wave components and with seismic soil-pile-structure interaction 

problems in the time domain. The other advantage of this particular element is that it can 

model the far field, regardless of the shape of the near field domain. A detailed 

presentation of the corresponding element equations is presented in Chapter 4.  



 10

1.8 Validation of Implemented Formulations  

The general midpoint integration formulations and the brick element with reduced 

integration points that have been implemented in OpenSees were validated by comparing 

the predictions with the theoretical solution for the MCC model under triaxial 

compression loading. The plastic shear stress-strain curves in Figures 2.7a and 2.7b 

reveal that the formulation predicts the theoretical results well.  

 

In addition, the Extended Mohr-Coulomb model and the 8-node brick element with 

reduced integration implemented into OpenSees were validated by comparing the 

predictions against those obtained using the commercial code PLAXIS for a single pile in 

cohesionless soil under lateral loading. Figure 1.2 indicates that the behavior of the pile 

predicted by OpenSees is slightly stiffer than that obtained with PLAXIS. The main 

reason is that the soil material is pressure-dependent in OpenSees, but is not in PLAXIS. 

Nonetheless, the results are quite similar. 
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Figure 1.2 Pile behavior predicted by PLAXIS and OpenSees 

 

1.9 Recommendations for Further Work 

Reduced integration 8-node and 20-node brick elements for particular elastoplastic soil 
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models have been developed and coded into the OpenSees. It should now be feasible to 

carry out static soil-structure interaction analyses for the Kealakaha Bridge with an 

acceptable level of detail using readily available computational platforms. However, for 

even better performance of OpenSees, a more efficient interface element, as described in 

(Harnau, Konyukhov et al. 2005) could be implemented.  

 

In addition, the semi-analytical infinite element described in Chapter 4 needs to be coded 

into OpenSees. The resulting formulation then needs to be verified, perhaps including 

seismic analysis of a limited portion of the Kealakaha bridge replacement. This may for 

example include one pier, pile cap, piles and surrounding soils.   

 

To obtain the seismic load for 3D problems on the interface of the near-field and far-field 

is still a challenging proposition, even with the help of commercial computer programs 

such as Shake 2000. An alternative is to use the coupled FE and IE approach described in 

Chapter 4 to generate the boundary loading by means of a free-field analysis.  
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Chapter 2 

 

 

Generalized Integration Formulation and Its 

Performance for Three-Invariant Elasto-Plastic 

Geomaterials 

 

 

 

Abstract 

A generalized integration algorithm for three-invariant elastoplastic soil models is 

described in tensorial form. This algorithm can be used in conjunction with isotropic, 

kinematic, and mixed hardening materials. By selecting the value of a single integration 

parameter, the well-known explicit and fully implicit formulations become two special 

cases in this general scheme. The performances of explicit and fully implicit integration 

are evaluated for the Drucker-Prager, extended Mohr-Coulomb, modified Cam-clay, and 

general Cam-clay models. It is found that the explicit and fully implicit integration 

provide similar levels of accuracy, but the former saves computational time. For 

complicated elastoplastic soil models, such as three-invariant general Cam-clay model, 

the advantages of explicit integration over fully implicit integration are discussed further.  

 

Keywords: Generalized integration, explicit, fully implicit, Cam-clay 

2.1 Introduction 

Numerical integration of elastoplastic constitutive relationships at Gauss point level is 

usually accomplished by some variant of the general Newton method. A multitude of 

algorithms have been proposed, ranging from very simple explicit to fully implicit 

schemes. Fully implicit integration, which is generally regarded as unconditionally stable 
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(Ortiz and Popov 1985; Simo and Taylor 1986) and more accurate (Borst and Feenstra 

1990; Schellekens and Borst 1990; Borst and Groen 2000) than explicit integration, is 

more difficult to implement for complex soil materials that require consideration of three 

dimensional stress space and general hardening and softening behavior. In this paper, we 

present a generalized integration formulation for three-invariant isotropic elastoplastic 

soil that includes explicit, partially implicit and fully implicit methods as special cases. 

The formulation is based on the generalized midpoint rule procedure of Ortiz and Popov 

(1985), but here we present the full set of incremental equations in tensorial form 

necessary for implementation in a numerical framework. The general formulation is 

consistent with a wide range of common soil elastoplastic constitutive relations, 

providing first order accuracy, convergence and numerical stability. Performance of the 

formulation is investigated with regard to four soil models of varying degrees of 

complexity. They are the Drucker-Prager (DP), Extended Mohr-Coulomb (EMC), 

General Cam-clay (GCC) and Modified Cam-clay (MCC) models. The corresponding 

derivatives for each of the models are included. The generalized formulation has been 

incorporated into the code OpenSees and its performance is evaluated with regard to 

various integration options and the four soil models. It should be noted that particular 

explicit and fully implicit tensorial versions of this general formulation have been 

presented in the past in connection with specific soil models (Jeremic and Sture 1997; 

Sloan, Abbo et al. 2001), but they generally do not permit a systematic comparison 

between explicit and implicit methods based on a common parent formulation, nor do 

they usually address more than one particular soil model at a time. 

 

The performance of explicit versus implicit integration methods has been addressed in 

many studies, but the conclusions with regard to accuracy, stability and convergence are 

not always consistent. This is to be expected given the crucial role that size of increment, 

shape of yield surface, and general complexity of the particular soil model play. For 

example, Zhang (1995) reports that explicit integration runs into convergence difficulties 

for his adopted J2 elastoplasticity model when the strain increment is large. Potts and 

Ganendra (1992) note that for the modified Cam clay model, use of the modified 

Newton-Rhapson method in conjunction with the explicit integration algorithm proposed 



 14

by Sloan (1987) leads to more accurate and efficient computations compared to the 

implicit method. Sheng and Sloan (2001) report that for critical soil models the accuracy 

of explicit integration is influenced by the size of the load increment, the type of flow 

rule, and the overconsolidation ratio. Comparative studies on the performance of the two 

integration strategies as applied to classical plasticity have also led to inconsistent 

performance trends (Gens and Potts 1988; Borst and Feenstra 1990; Yamaguchi 1993; 

Potts and Ganendra 1994). Borst and Feenstra (1990) found that the implicit method 

performs better than the explicit method when material models have a non-constant 

curvature in principal stress space. Gens and Potts (1988) investigated the performance of 

explicit, modified Euler, mid-point, and fully implicit Runge-Kutta-England 4th and 5th 

order algorithms with regard to the modified Cam clay model. Their findings indicate that 

the explicit and fully implicit methods yield the same level accuracy and that the explicit 

scheme may be more advantageous than higher order methods when trying to achieve 

moderate degrees of accuracy. Potts and Ganendra (1994) compare the implicit scheme to 

an explicit method with substepping for the modified Cam clay soil model. For larger 

strain increments, the substepping algorithm is more accurate than the implicit one. 

 

As studies such as these indicate, it is difficult to draw broad conclusions on the merits of 

one method over the other. The general formulation that is described in this article allows 

us to revisit the performance of explicit and fully implicit schemes, in this case obtained 

from the same parent formulation through selection of specific values of a single 

algorithmic parameter. This new formulation has been compared to theoretical 

predictions for MCC model and it appears to make reasonable predictions. 

2.2 Elastic Prediction 

Given a strain increment dkl for a particular time increment t, the stress and hardening 

parameters can be determined by applying the Kuhn-Tucker loading unloading conditions 

of plasticity: 

0),,( j
pq

i
pq kf                              (0.1) 

0d                                 (0.2) 
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0fd                                 (0.3) 

Where f is the yield function, k i are a set of scalar hardening variables,  j
pq are a set of 

tensor hardening variables, and  is a plastic multiplier that is related to the magnitude of 

the plastic strain. If a Newton-type scheme is employed to solve the system of non-linear 

equations at the global level, the consistent tangent stiffness tensor Eep
pqkl must also be 

known. At the beginning of a particular time increment, i.e. at time t (point A in Figure 

2.1), the stresses and hardening parameters can be expressed as tpq, 
tki, and t j

pq, 

respectively.  

 

 

 

Figure 2.1 Elastic prediction and plastic correction paths. 

 

The superscripts i and j vary between 1 and the number of hardening variables that need 

to be considered. At the start of the increment, the Kuhn-Tucker condition f(tpq, 
tki, 

t j
pq) Ftol is assumed to have been satisfied previously. The allowable magnitude of Ftol 

depends on the system of units and the precision of the computation platform, but is 

typically assumed in the range of 10-5 and 10-10. For the time increment t at hand, a set 

of new elastic stresses can be predicted as: 

klpqklpq
t

pq
pred dE    (0.4) 

where Epqkl is elastic stiffness tensor. If these predicted stresses satisfy the condition 

f(predpq, 
tki, t j

pq) Ftol , an acceptable end condition has been achieved and no plastic 
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correction phase is required. In this case, the updated set of variables at time t+t become 
t+tpq= 

predpq, 
t+tki = tki, and t+t j

pq = t j
pq.  

2.3 Plastic Corrections 

If the stresses predicted by Equation (0.4) are such that the Kuhn-Tucker criteria are not 

met, the material will have yielded and a new yield surface will have been established 

(Figure 2.1). A new set of stresses and hardening parameters, i.e. t+t( pq, k
i,  j

pq), need 

to be determined corresponding to this new condition (say point D in Figure 2.1). Thus a 

correction scheme needs to be used to arrive at D from the predicted state at B. A wide 

range of methods can be considered. If explicit integration is adopted, a corrected state 

can be obtained with a plastic flow direction evaluated either at the intersection point C 

(Sloan 1987) or at the predicted point B (Borst and Feenstra 1990). On the other hand, 

implicit integration uses either a plastic flow direction (and corresponding hardening 

parameter gradients) computed at the midpoint between states C and D (Point E), or the 

weighted average values at point C and point D (Ortiz and Popov 1985). Here we adopt 

the midpoint integration scheme.  

 

At the end of time t+t, the converged stresses and hardening parameters t+t( pq, k
i,  i

pq) 

at point D should meet the following conditions: 

0
kl

m
pqklpq

pred
pq

tt BE    (0.5) 

0)( 




d

dk
kk

i
mititt    (0.6) 

0)( 





d

d j
pqmj

pq
tj

pq
tt    (0.7) 

0),,(  j
pq

ttitt
pq

tt kf     (0.8) 

where mBkl = m(g/kl), the superscript m refers to the midpoint E and g is the plastic 

potential. In these equations, the primary unknowns are t+t pq , 
t+tki, t+t j

pq , and . 

Note that mBkl, 
m(dki/d), and m(d j

pq/d) are secondary unknowns that are functions of 

the primary unknowns and are evaluated at the stress state m( pq, ki,  j
pq), which 

represents the midpoint between the intersection stress state (int pq, k
i,  j

pq) and the final 
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stress state t+t( pq, ki,  j
pq). The midpoint stresses and hardening parameters can be 

expressed as: 

 pq
tt

pqpq
m  )1(int    (0.9) 

 ittiim kkk  )1(t   (0.10) 

 j
pq

ttj
pq

j
pq

m  )1(t   (0.11) 

where  is a general integration parameter (01), the choice of which leads to various 

integration schemes. int pq can be obtained explicitly by a procedure described below. 

Although in Equations (0.5) through (0.8) the number of primary unknowns and 

equations are the same, these equations can not be solved explicitly for most 

three-invariant elastoplastic soil models. Solution requires use of the Newton-Raphson 

iteration method. For convenience, all superscripts relating to time will be dropped from 

here on. At the end of each iteration, the value of the unknowns will be denoted by  pq, k
i, 

 j
pq, and . The values at the midpoint will include the superscript, i.e. m( pq, k

i,  j
pq). 

The elastic stiffness tensor Epqkl is taken as constant. The residuals of Equations (0.5) 

through (0.8) at the end of each iteration become: 

kl
m

pqklpq
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pqpq
R BE    (0.12) 
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
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),,( j
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pq

R kff    (0.15) 

Now differentiate Equation (0.5) with respect to  to obtain 
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where: 
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)(
2

j
mnpq

mj
pqmn

g
N

 
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   (0.19) 

Next solve for dmn/d from Equation (0.16) 
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where: 
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The difference between Equation (0.8) and Equation (0.15) can be expressed as:  
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Substituting Equation (0.20) into Equation (0.24) and solving for d yields: 

HVMA

f
d
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
    (0.26) 

where Amn=f/mn and Mmnkl = CpqmnEpqkl 

Differentiate Equations (0.12) through (0.14) for the current stress state: 
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In Equation (0.28): 
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For Cam-clay type hardening rules: 
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whereas for isotropic hardening with a hardening rule given by dki=ai(d p
rsd p

rs)
1/2, we 

can write: 
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In the above, ai are a series of hardening constants that depend on the particular soil 

model (Chen 1982) and d p
rs is the plastic strain increment tensor. 

In Equation (0.29): 
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Next, substitute Equation (0.34) into Equations (0.30) and (0.33). Also, substitute 

Equations (0.30), (0.33), and (0.34) into Equations (0.27), (0.28) and (0.29) and solve 

for d mn, dki, and d j
pq: 
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Equations (0.26), (0.35), (0.36), and (0.37) are the equations to be used for 

Newton-Raphson iteration.  
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As pointed out by Ortiz and Popov (1985), when  < 1/2 the stability of this integration 

scheme is only conditionally stable. Luccioni et al. (2001) further point out that even 

when 1/2    1, stability is only linear and can not be guaranteed for complex 

constitutive models. When the Newton-Raphson iteration procedure diverges, a normal 

return scheme, which has been used successfully by Nayak and Zienkiewicz (1972), 

Owen and Hinton (1980), Sloan and Randolph (1982), and Sloan et al. (2001), can be 

adopted. In this scheme  is set to zero and the hardening parameters are kept constant so 

that only the stresses are allowed to vary. Two Newton-Raphson iterations are performed 

so that stresses are forced back to the current yield surface along the normal to the yield 

surface from the non-converged stress point: 

pqpq Add     (0.38) 

Applying a first order Taylor expansion to the residual of the yield function:  

0 pqpq
R dAff     (0.39) 

and substituting Equation (0.38) into Equation (0.39), we can solve for d: 

pqpq

R

AA

f
d     (0.40) 

The correction to the stresses given by Equation (0.38) then becomes:  

rsrs

pq
R

pq AA

fA
d     (0.41) 

This type of normal correction makes the stress path follow the nearest path back to the 

yield surface. The Kuhn-Tucker constraint conditions can be satisfied after several 

iterations. But as indicated, this type of a normal correction does not account for the 

change in hardening parameters. As a result, the yield surface remains in place.  

 

In order to obtain the consistent tangent stiffness tensor, we can differentiate the 

equilibrium Equation (0.5) with respect to total strain and solve for dab/dmn: 
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Now differentiate the consistency condition  

0df    (0.44) 

with respect to total strain to obtain: 
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   (0.45) 

Substitute Equation (0.43) into Equation (0.45) and solve for d/dmn: 
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  (0.46) 

By substituting Equation (0.46) into Equation (0.43), we can obtain the elastic-plastic 

consistent tangent stiffness tensor: 
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MAVM
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rsmnrsklabkl
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  (0.47) 

It should be pointed out that the elastoplastic stiffness tensor given by Equation (0.47) is 

no longer symmetric for  > 0.0 regardless of whether associated or non-associated flow 

rule is adopted. As a result, the global stiffness matrix is also non-symmetric.  

 

A flowchart indicating how the above equations have been implemented within a 

Newton-Raphson scheme for correction of plastic stresses and hardening parameters is 

shown in Table 2-1. However, note that the initial plastic correction is performed along 

the normal to the potential surface at the intersection point of the stress path and the yield 

surface (point C in Figure 2.1). A procedure is needed to find this intersection point. An 

efficient explicit root finding method based on the Pegasus scheme of Dowell and Jarratt 

(1972) can be adopted. At the end of time t, the yield function satisfies f(tpq, 
tki, t j

pq) 

Ftol. During the interval from t to t+t, the strain increment is mn and the predicted 

stress increment is  pq = Epqmnmn. The root finding procedure becomes necessary if: 
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pq
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Ftolkf j
pq
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pqpq

t  ),,(   (0.49) 
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Table 2-1 Plastic correction procedure. 

1. Set pq = predpq, dpq = 0, ki = tki, dki = 0,  j
pq = t j

pq, d j
pq = 0,  = 0, NumIter = 0, 

MaxIter = 15, MaxValue = 1045.  

 Calculate fstart = f(tpq, 
tki, t j

pq) and fpred = f(predpq, k
i,  j

pq).  

  If |fstart|  Ftol  

   calculate intpq by calling root finding procedure 

  else 

   calculate intpq by calling Pegasus unload-reload procedure.  

2. Calculate mpq = (1 - )  intpq +   pq, 
mki = (1 - )  tki +   ki and m j

pq = (1 - 

)  t j
pq +    j

pq 

  Set  

   oldpq = pq, 
oldki = ki, old j

pq =  j
pq, 

old = , NumIter = NumIter + 1 

3. Calculate Rf = f(pq, k
i,  j

pq) 

  If Rf  MaxValue or NumIter > MaxIter,  

   go to step 8. 

  else 

   calculate d using Equation (2.26).  

4. Calculate Rpq, 
Rd, and R j

pq, using Equations (2.12), (2.13), and (2.14), respectively. 

5. Set d(Rpq) = - Rpq, d(Rki) = - Rki, and d(R j
pq) = - R j

pq. Calculate the new values for 

dpq, dki, and d j
pq using Equations (2.35), (2.36), and (2.37).  

6. Update the values of the unknowns  

  pq = oldpq + dpq; k
i = oldki + dki;   j

pq = old j
pq + d j

pq;  = old + d 

7. Repeat steps 2-6 until the following criteria are satisfied. Then go to step 9. 

  ||Rpq||  TOL1, ||
Rki||  TOL2, ||

R j
pq||  TOL3, and |Rf|  TOL4   

8. Set  = 0 and perform steps 2-6 twice. Then perform the following calculations until 

|Rf|  TOL. Then go to step 9. 

  Rf = f(pq, k
i,  j

pq), 
oldpq = pq, dpq = Rf Apq / (ArsArs ), and pq = oldpq + dpq 

9. Calculate the elastic strain t+t e
ab = t e

ab + d ab - Bab, the plastic strain, t+t p
ab = 

t p
ab + Bab, and the consistent stiffness tensor Eep

abmn by means of Equation (2.47).  
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In that case we need to find a scalar value  which is larger than zero and less than 1 and 

satisfies the function |f(tpq+ pq, 
tki, t j

pq)|Ftol . In other words, this entails finding 

the single root of a non-linear, one-variable equation within a given root domain. The 

initial root domain (0, 1) is such that 0=0 and 1=1. A series of Pegasus iterations are 

carried out. If after a set maximum number of iterations the root is not found, the 

remaining domain is divided into N equal size subdomains. If the values of f have a 

different sign at the ends of a particular subdomain, the root must be within that interval. 

The entire procedure is repeated until (a) the root is found, (b) the difference between 0 

and 1 is smaller than the precision of the computational platform, or (c) a prescribed 

maximum number of iterations is reached. Note that the proposed Pegasus procedure 

(Table 2-2) improves upon the one proposed by Sloan et al. (2001) since when f at =0 

is very small (and f at =1 is very large), the original scheme can run into convergence 

problems, whereas the modified scheme in Table 2-2 does not. 

Table 2-2 Root finding procedure. 

1. Set 0=0 and 1=1, calculate f0 = f(tpq+0 pq, 
tki, t j

pq) and           

  f1 = f(tpq+1 pq, 
tki, t j

pq). 

2. Perform steps 3-4 PMAX times 

3. Calculate =1-(1-0)f1/(f1-f0) and f = f(tpq+ pq, 
tki, t j

pq). 

4. If |f|Ftol  

  terminate this procedure and go to step 12 with present value of ,  

 otherwise 

   if ff0<0  

    set f1 = f, 1 = ,  

   otherwise 

    set f0 = f, 0 = . 

5. Set i= 1. 

6. Set =0+i(1-0)/N and calculate f = f(tpq+ pq, 
tki, t j

pq). 

7. If |f|Ftol  

  terminate this procedure and go to step 12 with present value of ,  
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Table 2-2 (Continued) Root finding procedure. 

otherwise 

   if f > Ftol  

    set f1 = f, max = , i = N+1,  

   otherwise 

    if f > f0 

     set f0 = f, min = . 

8. Increase i by one; perform steps 6 and 7 until iN. 

9. Set 0 = min, 1 = max. 

10. If |1 - 0|EPS or the number of iterations equals to IterMax, set  = 0 and 

terminate this procedure and go to step 12 with present value of . 

11. Perform step 2-9 for IterMax times. 

12. intpq = tpq +  pq. 

 

As pointed out by Sloan et al. (2001) and others, when the stress point at time t is on the 

yield surface, i.e. |f(tpq, 
tki, t j

pq)|Ftol , the predicted stress path may pass through an 

elastic zone first with f(tpq+ pq, 
tki, t j

pq)<-Ftol and 0<<1, and then end outside the 

yield surface where f(tpq+ pq, 
tki, t j

pq)>Ftol (Figure 2.2). This occurs when the 

direction of the predicted stress increment has a blunt angle  with the normal of the yield 

surface, i.e.: 

Tol
AA

A

rsrsrsrs

rsrs 






cos   (0.50) 

where Tol is a small positive tolerance. In this case, the intersection point of the predicted 

stress path and the yield surface should be determined before proceeding with the plastic 

correction phase. The specific process of finding this intersection point is different from 

the root finding procedure described above because a narrowed root domain, which 

contains the intersection point, must be determined first. Afterwards, the algorithm in 

Table 2-2 can be used.  
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Figure 2.2 Predicted unloading-reloading stress path. 

 

Sloan et al. (2001) describe a Pegasus unloading scheme that appears to work 

successfully in many cases. However, if the value of the yield function becomes very 

large at the predicted state, i.e. the intersection point (Point C, Figure 2.1) is very close to 

the starting location in relation to the predicted state, Sloan’s scheme can have a difficult 

time finding the correct root domain. A modified Pegasus unload-reload algorithm can be 

described as follows. Its main purpose is to find an elastic point where the yield function 

has a value less than the negative tolerance, f<-Ftol. Since at the start |f(tpq, 
tki, t j

pq)|Ftol, 

the most likely location for the elastic point is within the immediate neighborhood of the 

starting point. Therefore, we divide the strain increment into a number of sub-increments, 

each increasing by a factor e (e > 1.0) from the previous one (Figure 2.2). When the value 

of f is very large at the predicted point, the smaller the sub-increment near the starting 

point, the faster the procedure to find a stress point that is located within the elastic zone. 

Of course, if f at the predicted point is small, and e is large, a larger number of 

computational steps will be necessary. Our experience suggests an optimum of 1.2 for e. 

The modified Pegasus unload-reload procedure is listed in Table 2-3.   
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Table 2-3 Modified Pegasus unload-reload procedure. 

1. Set  pq = Epqmn mn, 0 = 0, 0_old = 0, 1 = 1;  

 calculate f0 = f(tpq+0 pq, 
tki, t j

pq) and f1 = f(tpq+1 pq, 
tki, t j

pq);  

 set f0_old = f0, f1_old = f1. 

2. Set e =1.2, s0 = (1-e)/(1- eNSUB), i = 1. 

3. Set 0_old = 1, d = 1 - 0, k = 1. 

4. Set d = d0  s0  ek-1, d pq =  pq  d,  = 0_old + d,  

 calculate f = f(tpq+ pq, 
tki, t j

pq) 

5. If f > Ftol  

   set 1 = , f1_old = f, k = NSUB + 1,  

 otherwise 

   if f < -Ftol  

    set 0 = , f0_old = f, k = NSUB + 1, and i = IterMax + 1,  

   otherwise 

  set 0_old = . 

6. Set k = k + 1; if k NSUB, perform steps 4 and 5 again. 

7. Set i = i + 1; if i  IterMax, perform steps 3 to 6 again. 

8. If f0_old < -Ftol and f1_old > Ftol,  

 set d = 1 - 0, 
spq = tpq+0 pq, and  Local

pq= d   pq. Take tpq as tpq and 

 Local
pq as  pq to perform the root finding procedure and return Local. Calculate  = 

0 + Local  d.  

 Otherwise, set  = 0. 

9. intpq = tpq +  pq. 
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2.4 Implementation of Formulation into OpenSees 

The general integration scheme has been implemented into the code OpenSees (2004) 

along with four commonly used soil constitutive models that vary in complexity and 

versatility. In hierarchical order, they are the Drucker-Prager (DP), extended 

Mohr-Coulomb (EMC), modified Cam-clay (MCC), and general Cam-clay (GCC) 

models (Table 2-4). The Drucker-Prager model is the simplest one among the four and 

considers only two stress invariants. The EMC model is a modification of the DP model 

that takes into consideration the third stress invariant. As a result, the yield surface in  

Table 2-4 General characteristics of selected elastoplastic models. 

 Drucker-Prager Extended Mohr- 

Coulomb 

General 

Cam-clay 

Modified 

Cam-clay 

Yield and 

potential 

functions 

f = p + q - k 
f = p + N()q - 

k 

f = q2/M()2 + 

p(p-p0) 

f = q2/M2 + 

p(p-p0) 

Stress 

invariants 
p, q  p, q,  p, q,  p, q 

Hardening 

rule 
d = Cd p  d = Cd p  

dp0 = 

vp0d p
ii/(m-) 

dp0 = 

vp0d p
ii/(m-) 

Parameters 

For triaxial 

compression: 

 = 6sin/(3-sin) 

k = 6ccos/(3-sin) 

 

For triaxial 

extension: 

 = 6sin/(3+sin) 

k = 6ccos/(3+sin) 

 = 6sin/(3+sin),  

k = 6ccos/(3+sin), 

M() = /N(), 

 

N() = [4(1-e2)cos2 +  

(2e-1)2]/{2(1-e2)cos + 

(2e-1)[4(1-e2)cos2 + 5e2 – 4e]}, 

 

e = (3+sin)/(3-sin) 

For triaxial 

compression: 

M = 

6sin/(3-sin) 

 

For triaxial 

extension: 

M = 

6sin/(3+sin) 

Constants  - friction angle; c – cohesion; v - specific volume; m - compression 

index;  - swelling index; C - hardening parameter. 
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principal stress space is not circular. Of course, the two Cam-clay models have elliptical 

yield surfaces in the p-q plane but differ from each other in terms of the exact functional 

form used for the DP and EMC (Figure 2.3). The first and second order derivatives for 

each of these models, necessary for implementation into a numerical code, are included 

in tensorial form in the Appendix A.  

o



q

pp o

 

a) Deviatoric plane         b) q-p plane 

Figure 2.3 Yield surfaces for selected constitutive models. 

 

The remainder of the article focuses on a comparison of performance among these four 

models for two integration options. Explicit integration is obtained by setting  = 0 and 

implicit integration by letting  = 1. Of particular interest is the efficiency of these two 

schemes with regard to the four constitutive models. For this purpose, a hypothetical 

cubical soil element consisting of a 20-node isoparametric brick element with 14 Irons 

(1971) integration points is subjected to various triaxial loadings. Typical material 

properties corresponding to a silty clay were assumed (Table 2-5). 
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Table 2-5 Material properties and initial conditions for simulation runs. 

Parameter Symbol Value 

Unit weight  14.50 kN/m3 

Friction angle  280 

Poisson’s Ratio  0.33 

Virgin compression index  0.019 

Swell index m 0.006 

Pre-consolidation stress p0 140 kPa 

Initial void ratio e0 0.65 

 

2.5 Performance of Implicit and Explicit Integration 

In each simulation, the soil element is first compressed isotropically to 140 kPa. 

Thereafter, three stress paths are investigated (Figure 2.4). Path LP-1 corresponds to 

deviatoric stress with y/z=0. For path LP-2, the stress ratio is kept at y/z=0.5, 

and for path LP-3 the stress ratio is again y/z=0 but z is negative. In each case, x 

is kept constant at 140 kPa. The corresponding Lode angles for paths LP-1, LP-2, and 

LP-3 are 00, 300, and 600, respectively (Figure 2.4). One reason that paths LP-1 and LP-3 

are chosen is that analytical derivatives of the Lode angles at 00 and 600 are not available 

for the EMC and GCC models and they must instead be determined numerically. This 

O

 

Figure 2.4 Stress paths in the deviatoric plane. 
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forces an evaluation of potential numerical errors. More importantly, these loading 

schemes, albeit somewhat simplistic and limited, span the range of possible constant 

stress ratio paths in the y-z plane. While plane stress loading results in three-dimensional 

deformations, we dispense with the complexity of considering the effects of stress 

changes in all directions for the time being. Use of a single element leads to equal 

stresses and strains at all Gauss points and therefore avoids the influence of yielding in 

neighboring elements that may unnecessarily cloud the resulting behavior.  

 

The performance of explicit and implicit integration methods is discussed first with 

respect to the DP and EMC models, which lack an ultimate failure condition and strain 

hardening mechanism. Vertical loads of 460 kPa, 460 kPa, and -120 kPa are applied for 

the LP-1, LP-2, and LP-3 paths, respectively. The deviatoric plastic stress-strain curves 

are very similar for increments 15 through 1200, regardless of whether implicit or explicit 

integration is used (Figure 2.5). The number of increments and the type of integration 

method have virtually no effect on the overall predictions. The accuracy of integration 

can be evaluated by defining a relative error measure: 

100
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    (0.51) 

where pq, k
i, and  j

pq are values at the end of a particular increment and *pq, 
*ki, and 

* j
pq are the corresponding values at the end of that increment for the run with 1200 steps. 

A representative set of finding is shown in Figure 2.6 for the LP-2 path. The error for 

both explicit and implicit integration methods is very small and almost indistinguishable, 

as was suggested in Figure 2.5. On the other hand, there are significant savings to be had 

in choosing the explicit method over the implicit one for the EMC model. Of course, this 

is particularly true as the number of sub-increment steps increases. Computational time 

increases nearly linearly with number of steps. The ratio between the time used by 

explicit integration and that used by implicit integration in the DP model is about 1.0 

while it is only about 1/3 in the EMC model. The main reason that the implicit integration 

procedure for the EMC moel is much more time consuming is that it involves evaluating 

the second derivative of the third stress invariant, while the DP model does not.  
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  a) DP model (explicit integration)         b) DP model (implicit integration) 
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Figure 2.5 Stress-strain prediction for DP and EMC models. 
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            a) DP model                           b) EMC model 

Figure 2.6 The relative errors and time consuming of explicit and implicit integrations 

in DP and EMC models for LP-2 ( = 300) loading path. 
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The MCC and GCC critical state models have well-defined failure and yield criteria and 

are clearly superior to the DP and EMC models in terms of their ability to model real soil 

behavior. However, as stress conditions approach failure, numerical instability may occur 

unless very small loading steps are chosen. For the particular problem at hand, use of 

1200 steps to achieve the final load results in more accurate predictions than using only 

15 or 60 steps, regardless of whether implicit or explicit integration is used (Figure 2.7). 

The integration formulations are also validated by comparing the finite element 

predictions with the theoretical predictions using the MCC model (Muir Wood 1990) 

under triaxial compression path LP-1 (Figures 2.7a and 2.7b). 

 

As in DP and EMC model, Equation (0.51) is used here to calculate the relative errors. 

Two loads, one z=105 kPa, which is smaller than the failure load and the other one 

z=150 kPa, which is larger than failure load are chosen to test the performance of the 

implicit and explicit integration with the number of increments increases. Under the first 

load, both MCC model and GCC model do not fail but just yield (named yield loading). 

The second loading is called failure loading. The relative errors of implicit integration are 

larger than the explicit integration in most cases when the number of increments is small 

(Figure 2.8). In addition, both integrations show the unstable character in both models. 

But when the number of increments increases, the error of implicit integration decreases 

faster than that of the explicit integration. For the yield loading of implicit integration, 20 

steps are enough to obtain relatively small errors for both MCC and GCC model. For the 

same level of accuracy, the explicit integration need about 50 steps. But when the time is 

concerned, the implicit integration uses about 2~3 times of that used by explicit 

0 5 10 15
0

100

200

300


q
 (%)

q 
(k

P
a)

LP-1

LP-3

LP-2

LP-1 Theoretical Solution

15 steps 
60 steps
1200 steps  

LP-1 1200 steps

 

0 5 10 15
0

100

200

300


q
 (%)

q 
(k

P
a)

LP-1

LP-3

LP-2

LP-1 Theoretical Solution

15 steps 
60 steps
1200 steps  

LP-1 1200 steps

 

   a) MCC model (explicit integration)      b) MCC model (implicit integration) 



 33

0 2 4 6 8 10 12
0

50

100

150

200

250

300


q
 (%)

q 
(k

P
a)

LP-1

LP-3

LP-2
15 steps 
60 steps
1200 steps  

0 2 4 6 8 10 12
0

50

100

150

200

250

300


q
 (%)

q 
( k

P
a)

LP-1

LP-3

LP-2
15 steps 
60 steps
1200 steps  

 

    c) GCC model (explicit integration)     d) GCC model (implicit integration) 

Figure 2.7 Stress-strain prediction for MCC and GCC models. 

 

integration for the same level of accuracy of yield loading (Figure 2.8a and 8b). For the 

failure loading (Figure 2.8c and 8d) implicit integration performs better in the MCC 

model than in the GCC model. As the model gets more complicated, the instable 

character of implicit integration shows up when the number of increments in small. More 

loading steps are needed to arrive at a more accurate result for implicit integration for 

GCC model. The time used by implicit integration is about 5 times that used by explicit 

in GCC model for the same number of increments while this value is 4 in MCC model. 

This fact implies that implicit integration is less competent than explicit integration in 

complicated models at least for the problem investigated.   
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         c) MCC model at failure               d) GCC model at failure 

Figure 2.8 The relative errors and time consuming of explicit and implicit integrations 

in MCC and GCC models for LP-2 ( = 300) loading path. 

2.6 Conclusions 

The general form of an integration scheme was introduced and the performances of two 

extreme cases of this integration, which are the well-known explicit and fully implicit 

integration schemes, were studied. By applying to four elastoplastic soil models with 

different level of complexity, the performances can be summarized as follows: 

 The explicit integration is much faster than the implicit integration.  

 The accuracy of explicit and implicit integrations is in the same level in the DP, 

EMC models. The implicit integration is more accurate in MCC and GCC models 

in a small range of number of increments if the stress state is not approaching 

failure.  

 The explicit integration saves more time than for models which have curved yield 

surfaces in both q-p plane and deviatoric plane such as GCC model than other 

models as DP, EMC, and MCC model.  

 To achieve the same level of accuracy and save more time, explicit integration is 

the better choice than the implicit integration in all four models.  
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Chapter 3 

 

 

Pressure-Dependent Nonlinear Lateral Resistance of 

Single Pile in Cohesionless Soil 

 

 

 

Abstract 

This paper presents the results of a 3D elastoplastic numerical study on the factors 

affecting the lateral response of single piles, including the coefficient of lateral earth 

pressure at rest, the unit weight of soil, friction angle, initial Young’s modulus of the soil, 

initial confining pressure, pile diameter and stiffness. It is found that the first three 

parameters are of similar importance with regard to ultimate lateral resistance. They 

influence soil-behavior indirectly through the soil’s Young’s modulus. Therefore Young’s 

modulus, which is assumed to be pressure-dependent plays a crucial role in the 

development of lateral resistance. The other factors are also important, although the pile’s 

Young’s modulus has no effect on the stiffness of the p-y curves. 

 

Keywords: pile; 3D elastoplastic; soil resistance; lateral resistance. 

3.1 Introduction 

Lateral load transfer from pile to soil that results in any significant degree of 

displacement invariably leads to complex soil-structure interaction. This complexity is 

usually ignored in engineering practice, where the lateral resistance of piles is evaluated 

by simplified methods that make significant assumptions with regard to soil and pile 

behavior. For example, the widely-used limit state approach (Broms 1964a; 1964b) 

assumes perfectly plastic soil behavior, which ignores deformations prior to failure and 
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predicts total collapse thereafter. In the p-y method, subgrade reaction is represented by a 

series of discrete springs that may be linear elastic (Reese and Matlock 1956; Matlock 

and Reese 1960) or nonlinear (1974; M.W. and Murchison 1983). This method is unable 

to account for permanent deformations and usually fails to take into consideration 

interaction among individual springs and therefore soil continuity. Accurate p-y curves 

are difficult to obtain for particular pile and soil combinations without expensive field 

tests. The continuum method based on Mindlin’s approach divides the pile into one or 

more one-dimensional elements and integrates the solutions for each segment along the 

soil-pile interface (Poulos 1971; Poulos 1971; Filho, Mendonca et al. 2005). Although 

this accounts for pile continuity, the pile response is assumed elastic and the soil is not 

modeled as a continuum. 

 

A more rigorous approach, and the one that is used herein, discretizes the pile and the soil 

into three-dimensional elements within the framework of the finite element method in 

order to preserve soil and pile continuity (Adachi and Kimura 1994). Of course, sliding 

and separation along the soil-pile interface can also be considered. More importantly, the 

finite element is a rigorous method that combines fundamental field equations, boundary 

conditions and compatibility conditions with virtually any mode of soil behavior, 

therefore providing a means for accurate and realistic prediction of soil-pile interaction. 

Numerical results from finite element computations can easily be expressed in terms of 

p-y curves in order to model and test field behavior (Brown, Shie et al. 1989; Brown and 

Shie 1990a; 1990b; Brown and Shie 1991). Yang and Jeremic (2002) developed a series 

of p-y curves for single piles in layered clay and sand deposits employing the relatively 

simple von Mises and Drucker-Prager soil models. Fan and Long (2005) incorporated a 

more sophisticated hierarchical single-surface δ1-elastoplastic model and compared their 

computations to simplified methods of predicting ultimate soil resistance. They found 

that the stiffness of the pile had little influence on the p-y curves and that the ultimate soil 

resistance is not linearly dependent on the diameter of the pile. They also found that the 

coefficient of lateral earth pressure, K, contributes to the stiffness of the soil. Larger 

values of K result in a higher ultimate soil resistance. Nonetheless, a crucial limitation of 

their work is that they neglected to analyze the effects of the initial stress state, as 
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represented for instance by the coefficient of lateral earth pressure at rest, Ko, and the unit 

weight of the soil, . These factors play an important role in lateral pile resistance, and 

this is investigated in this article. The other limitation of the above FE studies is that their 

focus is on the p-y curves and ultimate soil resistance without truly addressing the 

response of the pile. In fact, there are many instances in engineering practice where the 

ultimate lateral loading capacity of the pile is more important than that of the soil.  

 

The response of a pile to lateral load is a function of many factors, including the stiffness 

of the pile, the constitutive properties of the soil and the stress state at the start of loading. 

In this study, we use three-dimensional OpenSees (2004) finite element modeling to 

investigate the nonlinear response of a single pile in cohesionless soil, which is subjected 

to lateral loading. We use a pressure-dependent, elastoplastic soil model and focus on the 

influence of the values of Ko and Eo (initial Young’s modulus), as well as the role of 

stiffening/softening resulting from changes in the confining soil pressure p. In addition, 

the influence of soil friction, pile stiffness and pile diameter are also considered. 

3.2 Soil and Pile Constitutive Models 

The selected problem considers a 21-meter square pile embedded in a half-space of 

homogenous sand (Figure 3.1). A thin layer of elements between the pile and soil are  
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Figure 3.1 Finite mesh used in the computation of moments. 
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used to characterize the interface, primarily through a reduced friction angle equal to two 

thirds of the free-field value. The pile is modeled as an elastoplastic material that obeys 

the von Mises yield criterion. From here on, three types of materials are identified as 

‘soil’, ‘interface’, and ‘pile’, respectively. All three are assumed to follow the 

non-associated von Mises flow rule, but without any plastic hardening. The von Mises 

potential function is given by 

23g J  (1.1) 

where J2 represents the second stress invariant.  

 

The soil is a homogenous medium dense sand with a friction angle  of 390 and a unit 

weight o of 14.5 kN/m3. Soil nonlinearity also results from adoption of a 

pressure-dependent Young’s modulus E: 

0.5( )o
atm

p
E E

p
  (1.2) 

where Eo is the initial Young’s modulus, taken as 17.4 MPa. Also, p is the confining 

pressure and patm is atmospheric pressure. The soil model is based on the extended 

Mohr-Coulomb (EMC) elastoplastic model, which has been implemented into OpenSees 

as part of this study. Yielding is given by: 

kqNpf  )(  (1.3) 

where  = 6sin/(3+sin), k = 6ccos/(3+sin), and: 

]45cos)1(4)[12(cos)1(2

)12(cos)1(4
)( 2222

222

eeeee

ee
N







  (1.4) 

In Equation(1.4), e = (3+sin)/(3-sin), and c is the cohesion of the soil. Deviatoric and 

volumetric stresses, q and p respectively, are given by: 

ijijssq
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3
mmp


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where: 

 ijijij ps     (1.7) 
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s1 is the first principal value of sij. and ij is the Kronecker Delta.  

 

The pile chosen for modeling purpose consists of a square cross-section of 400 mm by 

400 mm. The Young’s modulus of the pile material Ep = 26.07 GPa and the yield function 

for this material is assumed to be given by: 

2
23f J k    (1.9) 

where k = 30.3 MPa is the yield strength of the pile material.  

3.3 Finite Element Modeling  

Eight-node brick elements and a reduced integration scheme with six integration points in 

each element were selected for the pile, interface, and soil materials. The reduced 

integration scheme was necessary to keep computations manageable. The six Gauss 

points are in the center of the six surfaces constituting the brick element. The mesh 

consisted of a total of 976 elements and 1248 nodes (Figure 3.1). The top 21 meters of 

soil and pile are divided into eight layers. Ten meters of soil were included beneath the tip 

of the pile to minimize boundary effects and were divided equally into three layers.  

 

The first stage of the analysis involved self-weight loading in order to generate a static 

equilibrium stress state prior to lateral loading. During this phase, each node was allowed 

a single vertical degree of freedom, except on the bottom boundary where all degrees 

were fixed. After the initial stresses were set, each node was assigned three displacement 

degrees of freedom for the subsequent loading phase with equilibrated lateral pressures 

substituted for related degrees of freedom. Lateral boundaries were restrained in their 

respective normal directions. The bottom of the domain was restrained in all three 

directions. The unit weight of the pile was assumed to equal that of the soil. As already 

mentioned, the only difference between the interface and free field soil elements was the 

assumption of a reduced friction from the former (260).  
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3.4 Methods to Determine Soil Resistance P and Pile Moment M  

Soil resistance p (From now on, the italic small case p denotes the soil resistance) can be 

obtained from the stress state at the integration points along the soil-pile boundary. The 

value of traction in the x-direction, which is the loading direction, is taken as: 

jxjx nT    ( j = x, y, z) (1.10) 

where n = (nx, ny, nz)
T is the vector normal to the surface of the pile and ij is the stress 

state of each integration point. Soil resistance can then be obtained as:  

xL
p T dl   (1.11) 

where L is the circumference of the pile. Unfortunately, this expression leads to different 

traction forces depending on whether stresses for the adjacent pile or soil elements are 

used. A different method involves differentiating the moment twice with respect to depth, 

z:   

2

2 )(
)(

z

zM
zp




  (1.12) 

For this purpose, the moment distribution, which is calculated from the stress state in the 

pile, must be expressed as a polynomial function of the vertical coordinate z (Wakai, 

Gose et al. 1999; Chae, Ugai et al. 2004). This is not always easy to do. 

 

In this paper, a new method is adopted. In order to obtain the soil resistance of the ith 

layer of soil, the ith layer of pile elements are considered (Figure 3.2). The nodal forces in 

x direction of each pile element caused by the internal stresses are integrated from the 

values of all six integration points. The sum of the nodal forces in x direction, Si, on the 

upper surface of the ith layer of pile elements are in the same magnitude as and different 

sign to that on the lower surface. The distribution of the soil resistance force, 2Qi, along 

the depth of this layer is taken as constant. Therefore, it can be taken as two concentrated 

forces acting on the upper and lower surfaces respectively. The external shear forces on 

this layer caused by the upper (i-1)th layer and lower (i+1)th layer of pile elements are Vi-1 

and Vi respectively. By setting the external and internal nodal forces equal on both upper 

and lower surfaces, the soil resistance force, 2Qi, can be obtained from Vi-1 - Qi = Si and 

the shear force can be obtained from Vi + Qi = Si. For the first layer at the top of the pile, 
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Figure 3.2 Schematic for calculation of pile elements. 

 

V0 is equal to the lateral load applied. The average soil resistance in the i th layer, pi, is 

obtained by dividing 2Qi by the height Hi: 

i

i
i H

Q
p

2
  (1.13) 

 The moment in the pile can be obtained from summarizing the moment of each vertical 

internal nodal force to the center line of the pile cross-section (Figure 3.2): 

4
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x x
M F x




   (1.14) 

where Fj,i is the total vertical internal nodal force of the jth column nodes on the ith layer 

of pile and xj is the x coordinate of the jth column (Figure 3.2b).  

3.5 Coefficient of Lateral Earth Pressure at Rest 

The initial stress conditions in the soil surrounding the pile which were established by the 

process of self-weight consolidation can be characterized by the coefficient of lateral 

earth pressure at rest, Ko. Upon lateral loading, passive and active conditions develop on 

the leading and trailing sides of the pile, respectively. The main reason of the self-weight 

phase is to establish an equilibrated condition with a set of initial stresses at the Gauss 
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integration points. Resulting strains are of secondary importance. Therefore, during this 

phase, the soil and the pile are both taken as elastic materials with a very large Young’s 

modulus and a suitable Poisson’s ratio in order to avoid large initial strains. The Poisson’s 

ratio is determined by the value of Ko as: 

0

01

K
v

K



 (1.15) 

For loose sand Ko is often approximated by Jaky’s (1944) relationship, Ko = 1-sin, or it 

may be determined from in situ tests. The soil’s stress ratio: 

3(1 )

1 2

K

K
 



 (1.16) 

is a useful measure to evaluate particular stress states relative to Mohr-Coulomb limiting 

frictional conditions of active failure ( = a , K = Ka) and passive failure ( = p , K = 

Kp). If we assume that Jaky’s relationship holds, then o < a and Ka < Ko < 1. Since  = 

260 for the interface (Ka = 0.39), the range of possible initial stresses in the deviatoric 

plane lies between points O and A in Figure 3.3. We can investigate the effect of initial  
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Figure 3.3 Range of coefficient of lateral earth pressure at rest Ko prior to lateral 

loading. 
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stress conditions on subsequent lateral loading by considering various values of Ko during 

the self-weight process. If Ko is set to 0.4, initial stresses will be quite close to active 

failure (for example points C1, C2 or C3 in Figure 3.4). On the other hand, if we assume 

that the overburden stress v = 0z does not change, then increasing values of Ko 

correspond to stress conditions progressively further removed from the envelope of active 

failure (Figure 3.4). Therefore, increasing values of Ko corresponds with increased elastic 

regions and presumably to different behaviors upon lateral loading.  
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Figure 3.4 Initial stress conditions investigated. 

 

Three simulations were carried out with Ko = 0.4, 0.6, and 0.9, respectively, with a 

constant γo = 14.5 kN/m3. A lateral load of 671 kN was applied in each case. It can be 

seen in Figure 3.5a that a larger soil resistance develops near the upper end of the pile as 

the value of Ko increases, even though deflection at the pile head decreases (Figure 3.5b). 

Similarly, the maximum bending moment generated in the pile becomes slightly smaller 

(Figure 3.5c) and the stiffness of the p-y curves increases somewhat (Figure 3.5d). The 

combination of soil and pile characteristics are such that the pile can be considered 
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flexible (In this case failure is controlled by the pile properties and the maximum bending 

moment.) and failure is likely to occur in the pile before the soil reaches limiting 

conditions. Therefore, it may be argued that the lateral capacity of the pile-soil system 

increases with Ko. However, the effect is minimal, at least for the set of conditions 

investigated. 
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Figure 3.5 Effect of Ko (Final lateral load P = 671 kN) 

 

3.6 Unit Weight of Soil  

The unit weight of the soil plays an important role in the development of lateral 

resistance. In the Broms’ (1964a) method, pile lateral resistance is as a nonlinear function 

of soil weight and the coefficient of passive lateral earth pressure Kp. Similarly, Reese et 

al. (1974), Borgard and Matlock (1980), and Meyerhof (1995) assume the ultimate lateral 
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resistance directly proportional to the unit weight of soil. In Meyerhof’s method the 

ultimate lateral load is given by: 

20.12 0.4u e br lQ DL K p DL   (1.17) 

where Kbr is the resultant net soil pressure coefficient. D and L are the diameter and 

length of the pile, respectively. Le stands for effective length:  

0.121.65e rL K L L   (1.18) 

where Kr is the pile’s relative stiffness. Also, pl is the limit pressure obtained from 

pressuremeter tests and can be given in units of kPa as: 

2 tan40 tan (45 ) tan
2lp e     (1.19) 

The pile’s relative stiffness has the following form:  

4LE

IE
K

s

pp
r   (1.20) 

where Es is the average horizontal soil modulus of elasticity. If Kr is less than 0.01 the 

pile is consider flexible. Figure 3.6a shows predicted soil resistance, where the unit 

weight of soil varies from 0.5o (Point C1, Figure 3.4) to 1.0o (Point C2, Figure 3.4) to 

1.5o (Point C3, Figure 3.4) while Ko remains constant. Here γo = 14.5 kN/m3. For a lateral 

load of 671 kN, the displacement of the pile becomes much smaller as the unit weight of 

the surrounding soil increases, as expected (Figure 3.6b and 3.6d). At the same time, 

more and more load is transferred to the upper layers, leading to smaller maximum 

moments and larger ultimate lateral capacities. But such an increase relationship between 

soil unit weight and ultimate lateral load is not linear as expected from Equation (1.17). 

The reason for this is redistribution of lateral soil pressures acting against the pile that 

occurs as the lateral load is increased. This phenomenon is not accounted for in the 

simplified methods. It must be stated though that the differences in predicted peak 

moments (Figure 3.6c) are rather small, despite the wide range of unit weights 

considered. 
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   c) Moment distribution along depth         d) P-y curves at a depth of 0.99 m 

Figure 3.6 Effect of  (Final lateral load P = 671 kN) 

3.7 Mean Soil Pressure 

Lateral resistance increases with Ko and o, in part because the initial mean soil pressure, 

po, increases as well. This in turn leads to a larger soil modulus E and a stiffer ensuing 

behavior. In order to isolate the effect that stress distance from the active failure condition 

plays at constant mean pressure, three simulations are compared in Figure 3.7 

corresponding to the initial states C5’ (Ko = 0.4,  = 11/9o), C5 (Ko = 0.6,  = o), and C5” 

(Ko = 0.9,  = 11/14o) in Figure 3.4. Only small differences can be observed in p-y 

stiffness and pile moments. As the position of the initial stress state approaches to the 

hydrostatic line, beginning at C5’ and ending at C5”, the lateral resistance increases 

slightly. It therefore appears that increasing lateral resistance with Ko is due partly to an 

increase in developed shear resistance (as measured by the distance between the initial 
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    c) Moment distribution along depth        d) P-y curves at a depth of 0.99 m 

Figure 3.7 Effect of initial mean soil pressure p (Final lateral load P = 671 kN) 

 

stress state and the failure surface), but more importantly due to an increase in the mean 

soil pressure, as noted by Fan and Long (2005). However, the lateral response of the pile 

is not a direct function of Ko and o. These parameters play a role in establishing the 

initial soil stresses and thereafter lateral behavior becomes primarily a function of the 

nonlinear stiffness of the soil. If Young’s modulus is assumed to be independent of stress 

state, the influence of Ko and o can be neglected.  

3.8 Initial Young’s Modulus Eo 

The initial stiffness of the soil, Eo, plays an important role in determining ultimate lateral 

resistance (Figure 3.8). For example, given a load of 671 kN, the deflection of the top of 

the pile with initial soil modulus of 1.74 MPa is about 7 times that with Eo of 17.4 MPa 
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and 32 times that with Eo of 174 MPa (Figure 3.8b). The modulus of subgrade reaction, 

which is the slope of the p-y curve, more than doubles as the value of Eo increases by a 

factor of ten. The effect of increasing the initial soil stiffness is to generate a higher 

passive soil pressure and a correspondingly lower moment near the top, whereas a lower 

initial stiffness leads to a more uniform lateral pressure distribution and a higher 

maximum moment. As mentioned before, the lateral resistance capacity of the flexible 

pile is controlled by failure of the pile, which occurs where the moment capacity is 

exceeded. Therefore, piles in soil of higher initial stiffness can be expected to have a 

larger capacity.  
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    c) Moment distribution along depth        d) P-y curves at a depth of 0.99 m 

Figure 3.8 Effect of Eo (Final lateral load P = 671 kN) 

 

For the pile at hand, the righthand side of Equation (1.17) is estimated to be 6090 KN for 

 = 390. As Eo varies from 1.74 MPa to 174 MPa, the corresponding average E value of 

the pile changes from 1.65 MPa to 165 MPa and the effective length Le decreases from 
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12.25 m to 7.05 m (Equations (1.18) and (1.20)). As a result, the value of Qu decreases 

from 2194 KN to 726.5 KN according to Equation (1.17). This trend of lower capacity 

with larger initial stiffness is opposite to what is suggested by the simulations in Figure 

3.8. Again, the reason here is that the simplified methods do not account for stiffening of 

the soil that occurs on the leading edge of the pile as lateral deformation takes place. 

Such pressure-dependent soil stiffening has long been recognized as an important aspect 

of soil behavior, particularly for cases involving significant volume change, but can only 

be captured accurately by modeling of the type carried out in this study.  

3.9 Pile Diameter  

Lateral resistance in cohesionless soils along the length of the pile is usually expressed as 

a variant of the following equations: 

( )p z D zK  (1.21) 

where all the terms have previously been defined. For example, in Brom’s method 

(1964a), the ultimate resistance pult is given as:  

( ) 3ult pp z D zK  (1.22) 

where Kp is again the coefficient of passive lateral earth pressure. Brinch Hansen (1961) 

suggested instead that:  

( )ult qp z D zK  (1.23) 

where Kq is the Hansen earth pressure coefficient, which is also a function of the friction 

angle . Fleming et al. (1992) used the square of Kp instead of 3Kp in Equation (1.22). To 

account for the shape of the pile, Zhang et al. (2005) proposed a function as: 

2( ) ( tan )ult pp z D z K K      (1.24) 

where  and  are shape factors and  is the interface friction angle between pile and soil.  

 

In this study, the influence of the diameter D of the pile is investigated by varying the 

diameter and keeping all the other parameters constant. Figure 3.9a and 3.9d reveal that 

the lateral load is transferred more uniformly in larger diameter piles, while the smaller 



 52

-100 0 100 200 300 400 500 600

0

5

10

15

20

25

p (kN/m)

 z
 (

m
)

 D = 200 mm  P = 168  kN
 D = 400 mm  P = 671  kN
 D = 800 mm  P = 2684 kN

   
0 50 100 150 200

0

500

1000

1500

2000

2500

3000

Lateral deflection of pile top  (mm)

L
at

er
al

 lo
ad

 o
n 

pi
le

 to
p 

 (
kN

)

D = 200 (mm)
D = 400 (mm)
D = 800 (mm)

 

  a) Soil resistance distribution along depth          b) Pile head deflection 

 

 

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

Normalized Lateral deflection of pile top y/y
max

N
or

m
al

iz
ed

 L
at

er
al

 lo
ad

 o
n 

pi
le

 to
p 

 (
kN

)

D = 200 (mm)   , y
max

 = 64   mm

D = 400 (mm)   , y
max

 = 126  mm

D = 800 (mm)   , y
max

 = 193  mm

-2000 0 2000 4000 6000 8000

0

5

10

15

20

25

Moment (kN-m)

 z
 (

m
)

 D = 200 mm  P = 168  kN
 D = 400 mm  P = 671  kN
 D = 800 mm  P = 2684 kN

 

    c) Normalized pile head deflection         d) Moment distribution along depth   

      

0 50 100 150 200
0

100

200

300

400

500

600

y (mm)

p  
(k

N
/m

)

z = 0.99 m
D = 200 (mm)
D = 400 (mm)
D = 800 (mm)

  
0 50 100 150 200

0

100

200

300

400

500

600

y (mm)

p n (
kN

/m
)

z = 0.99 m
D = 200 (mm)
D = 400 (mm)
D = 800 (mm)

 

             e) P-y curves                    f) P-y curves (Normalized p) 

Figure 3.9 Effect of D 

 

diameter piles transfer lateral load mainly relying on the upper portion of the pile. The 

results in Figure 3.9a, 9e, and 9f suggest that Equation (1.22) does a poor job as 
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representing the distribution of lateral resistance as a linear function of the diameter of 

the pile. If the relationship between the soil resistance is proportional to the diameter of 

the pile, then the normalized soil resistance, here defined as: 

400n

p
p

D
   (1.25) 

with D given in mm, would be the same in all three cases in Figure 3.9f. Instead, Figure 

3.9f indicates that the normalized soil resistance decreases with increasing pile diameter. 

This phenomenon is once more caused mainly by the nonuniform distribution of passive 

soil resistance along the leading edge of the pile. This was also noted by Prakash and 

Kumar (1996) and by Zhang et al (2005). In fact, Figure 3.9e shows a 

diameter-independent trend in the p-y curves in depth 0.99 m.  

 

As expected, the calculated ultimate lateral resistance of the pile the case of D equal to 

800 mm is larger than that for piles with a smaller diameter (Figure 3.9b). However, it is 

not proportional to D as indicated in Equation (1.17). Instead, it is proportional to D2 as 

shown in Figure 3.9c. In Figure 3.9c the normalized lateral load on pile top equals to the 

applied lateral load multiplied by a factor of (D/400)2, where D is in mm.  

3.10 Pile Young’s Modulus Ep 

More rigid piles lead to a larger lateral load capacity (Figure 3.10). According to 

Equation (1.20), if for example Ep increases from 2.607 GPa to 260.7 GPa, the relative 

stiffness factor Kr increases 100 times. As a result, Le increases 1.74 times to 12.25 m, 

which is still less than L Equation (1.18) and the ultimate lateral resistance increases by a 

factor of 3.02 to 2194 kN less than the maximum 6090 kN according to Equation (1.17). 

This increase in Ep is equivalent to decreasing Eo by a factor of 100. The results in Figure 

3.10 confirm, as expected, that the implied ultimate pile resistance increases with 

increasing Ep. Larger pile stiffness also reduces the deflection of the pile dramatically 

even though the moment generated in pile with larger stiffness is also much larger Figure 

3.10b and 10c. Apparently, p-y curves are independent to the pile stiffness as in Figure 

3.10d, this fact can also be verified by the study on the influence of the diameter of the 

pile.  
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    c) Moment distribution along depth       d) P-y curves at a depth of 0.99 m 

Figure 3.10 Effect of Ep (Final lateral load P = 671 kN) 

 

The relative stiffness of the pile-soil system (Equation (1.20)) increases as either the pile 

stiffness EpIp increases, or as the average Young’s modulus of the soil decreases. As 

expected in Figure 3.11a and 11c the resulted soil resistance distribution (Figure 3.11a) 

and the moment (Figure 3.11c) generated in the pile have no difference in both cases. 

However, these effects lead to significant differences in terms of lateral deflections. For 

instance in Figure 3.11b and 11d the relatively stiffer soil-pile configurations for which 

the distribution of soil resistance is the same (Figure 3.11a) and so is the moment (Figure 

3.11c) have a much larger deflection for soil with Eo of 1.74 Mpa than for pile with Ep of 

260.7 Gpa (Figure 3.11b). As the deflection of the pile head is concerned in elastic range 

(Figure 3.11b), increasing the stiffness of the pile or that of the soil gives the same results. 

As the pile-soil system falls into the elastoplastic range under the increasing lateral load, 

the system appears stiffer in the case of soil stiffness increasing. It is controversial to 
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Equation (1.20).  
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    c) Moment distribution along depth        d) P-y curves at a depth of 0.99 m 

Figure 3.11 Effect of E0 and Ep (Final lateral load P = 671 kN) 

 

As pointed out previously, the p-y curves are independent of the stiffness of the pile. But 

they rely heavily on the stiffness of the soil. As the soil becomes weaker, the slope of the 

p-y curve decreases (Figure 3.11d).  

3.11 Soil Friction Angle   

The friction angle defines the location of the elastoplastic soil’s yield surface. It is crucial 

in determining lateral capacity for the simplified methods (Brinch Hansen 1961; Broms 

1964a; Reese, Cox et al. 1974; Fleming, Weltman et al. 1992; Meyerhof 1995; Zhang, 

Silva et al. 2005). Its role in the determination of the lateral resistance capacity of the pile 
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derives from setting the initial lateral earth pressure coefficient Ko and the limiting 

conditions given by Ka and Kp. In order to investigate whether  plays a role in the 

predictions, other than through the Ko coefficient, simulations are presented in Figure 

3.12 where Ko has been set to an arbitrary value of 0.4 during the self-weight loading 

stage, and then varying the value of during lateral load. The results indicate that the value 

of  plays only minor role on the lateral capacity of the pile during lateral loading. It is 

probably caused by the small range of values of  investigated. For larger values of ,  
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   c) Moment distribution along depth         d) P-y curves at a depth of 0.99 m 

Figure 3.12 Effect of friction angle (Final lateral load P = 671 kN) 

 

the soil resistance distribution appears to be slightly more uniform and the maximum 

bending moment slightly smaller, but this effect is very minimal. Thus, the effect of the 

friction angle on ultimate lateral resistance comes mainly from determining the initial 

value of Ko. But as for the deformation of the top of the pile, larger friction angle reduces 

the deflection of the pile (Figure 3.12d). 
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3.12 Conclusions  

In this study, the influence of soil and pile constitutive parameters and pile diameter on 

lateral resistance are investigated for a single pile in cohesionless soil. Based on the 

results of several 3D elastoplastic simulations, the role of each parameter is qualified. 

 

For a given pile, if its properties and geometry are held constant, the effects of soil unit 

weight, friction and initial coefficient of lateral earth pressure play a similar role in the 

development of lateral resistance. They act to establish the initial stress conditions in the 

soil surrounding the pile and influence the initial value of the soil’s Young’s modulus. 

This initial stiffness is important since the soil is assumed to become stiffer with lateral 

deformation as the passive region on the front of the pile increases in mean stress. Once 

the initial Young’s modulus of the soil is set, the effect of those parameters on the lateral 

resistance is very limited. However, as the value of Young’s modulus in the soil increases, 

additional larger lateral resistance develops leading to larger ultimate capacity. Of course, 

pressure-dependent stiffening is not accounted for in Meyerhof’s (1995) method, which 

actually predicts a decrease in ultimate lateral capacity with an increase in soil modulus at 

least for the case investigated here in. On the other hand, Young’s modulus of the pile has 

little effect on the p-y curves for the range of pile and soil parameters investigated. The 

role that the diameter of the pile plays on lateral resistance is also accounted for 

incorrectly in the methods of Meyerhof (1995) and Broms (1964a).  

 

 

3.13 References 

Adachi, T. and M. Kimura (1994). Analyses of ultimate behavior of lateral loading 
castin-place concrete piles by 3-dimensional elastoplastic FEM. 8th Intl. Conf. on 
Computer Methods and Advances in Geomechanics, Morgantown, WV. 

Borgard, D. and H. Matlock (1980). Simplified calculation of p-y curves for laterally 
loaded piles in sand. Houston, Earth Technology Corporation, Inc. 

Brinch Hansen, J. (1961). The ultimate resistance of rigid piles against transversal forces. 
Bulletin No.12, Copenhagen, Denmark, Danish Geotechnical Institute. 



 58

Broms, B. B. (1964a). "Lateral resistance of piles in cohesionless soils." Journal of Soil 
Mechanics and Foundation Division, ASCE 90(3): 123-56. 

Broms, B. B. (1964b). "Lateral resistance of piles in cohesive Soils." ASCE Journal of 
the Soil Mechanics and Foundation Division Proceedings (JSMFD) 90(SM2): 
27-63. 

Brown, D. A. and C.-F. Shie (1990a). "Numerical experiments into group effects on the 
response of piles to lateral loading." Computers and Geotechnics 10: 211-230. 

Brown, D. A. and C.-F. Shie (1990b). "Three dimensional finite element model of 
laterally loaded piles." Computers and Geotechnics 10: 59-79. 

Brown, D. A., C.-F. Shie, et al. (1989). p-y curves for laterally loaded piles derived from 
three-dimensional finite element model. Proceedings of the 3rd International 
Symposium on Numerical Models in Geomechanics, Niagara Falls, Canada, 
Elsevier Applied Science. 

Brown, D. M. and C.-F. Shie (1991). "Some numerical experiments with a three 
dimensional finite element model of a laterally loaded pile." Computers and 
Geotechnics 12: 149-162. 

Chae, K. S., K. Ugai, et al. (2004). "Lateral resistance of short single piles and pile 
groups located near slopes." International Journal of Geomechanics 4(2): 93-103. 

Fan, C.-C. and J. H. Long (2005). "Assessment of existing methods for predicting soil 
response of laterally loaded piles in sand." Computers and Geotechnics 32: 
274-289. 

Filho, R. M., A. V. Mendonca, et al. (2005). "Static boundary element analysis of piles 
submitted to horizontal and vertical loads." Engineering Analysis with Boundary 
Elements 29: 195-203. 

Fleming, W. G. K., A. J. Weltman, et al. (1992). Piling engineering. London, Surrey 
University Press. 

Jaky, J. (1944). "The coefficient of earth pressure at rest." Journal of the Society of 
Hungarian Architects and Engineers 7: 355-358. 

M.W., O. N. and J. M. Murchison (1983). An evaluation of p-y relationships in sands. 
Research Report No. GT-DF02-83, Department of Civil Engineering, University 
of Houston. 

Matlock, H. and L. C. Reese (1960). "Generalized solutions for laterally loaded piles." 
Journal of Soil Mechanics and Foundation Division, ASCE 86(5): 63-91. 

Meyerhof, G. G. (1995). "Behavior of pile foundations under special loading conditions: 
1994 R. M. Hardy Keynote Address." Canadian Geotechnical Journal 32(2): 



 59

204-222. 

OpenSees (2004). Open System for Earthquake Engineering Simulation, Pacific 
Earthquake Engineering Research. 2005. 

Poulos, H. C. (1971a). "Behavior of laterally loaded piles: I -- single pile." Journal of Soil 
Mechanics and Foundation Division, ASCE 97(SM5): 711-731. 

Poulos, H. C. (1971b). "Behavior of laterally loaded piles: II -- pile groups." Journal of 
Soil Mechanics and Foundation Division, ASCE 97(SM5): 733-751. 

Prakash, S. and S. Kumar (1996). "Nonlinear lateral pile deflection prediction in sands." 
Journal of Geotechnical Engineering Division ASCE 122(2): 130-138. 

Reese, L. C., W. R. Cox, et al. (1974). Analysis of laterally loaded piles in sand. 
Proceedings of the 6th Offshore Technology Conference, Houston, Texas. 

Reese, L. C. and H. Matlock (1956). Non-dimensional solutions for laterally loaded piles 
with soil modulus assumed proportional to depth. Proceedings of the 8th Texas 
conference on soil mechanics and foundation engineering. 

Wakai, A., S. Gose, et al. (1999). "3-D elasto-plastic finite element analyses of pile 
foundations subject to lateral loading." Soils and Foundations 39(1): 97-111. 

Yang, Z. and B. Jeremic (2002). "Numerical analysis of pile behaviour under lateral loads 
in layered elastic-plastic soils." International Journal for Numerical and Analytical 
Methods in Geomechanics 26: 1385?406. 

Zhang, L., F. Silva, et al. (2005). "Ultimate lateral resistance to piles in cohesionless 
soils." Journal of Geotechnical and Geoenvironmental Engineering 131(1): 78-83. 

 
 

 

 

 

 

 

 

 

 

 

 

 



 60

Chapter 4 

 

 

Formulation of Time-Domain Seismic Soil-Structure 

Interaction Using a Coupled Finite and Infinite Element 

Approach 

 

 

 

Abstract 

This paper presents the equations of motion for three-dimensional soil-pile-bridge 

interaction in the time-domain for static and seismic loading. For this purpose, a new 

three-dimensional semi-analytical infinite element in frequency domain is developed. 

This new infinite element is unique in that it can accommodate a variety of interface 

shapes between the near and far fields while allowing for the propagation of 

compressional, shear and Rayleigh waves. The equations of motion in the time domain 

follow in a straightforward fashion. The proposed formulation offers considerable 

computational efficiency compared to methodologies proposed in previous studies.  

 

Keywords: time-domain; seismic; soil-structure; interaction; coupling; FE; IE; 

semi-analytical 

4.1 Introduction 

Soil-structure interaction analysis can be a daunting task from a modeling perspective if 

soil nonlinearity, complex three-dimensional geometries and dynamic effects need to be 

included. A case in point is the planned replacement of the existing Kealakaha Bridge on 

the Mamalahoa Highway, north of Hilo, Hawaii. The existing bridge crosses a very deep 

gulch and is located in a seismically very active zone where the peak ground acceleration 
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with a 10% probability of exceedance in 50 years is 0.4g. The new bridge will have a 

curved plan view and will include two large-diameter piers, each supported by multiple 

piles (Figure 4.1). The two piers will be resting at different ground elevations in 

 

 

a) Profiles of FE and IE mesh 

 

b) FE and IE mesh in I-I cross-section 

Figure 4.1 Schematic representation of analysis model using FE and IE 

 

steeply sloping terrain. The overall layout is such that significant torsional effects can be 

expected from earthquake loading (Naeim 1989). Torsion in this case cannot be modeled 
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properly using a simplified two-dimensional geometry, and instead one must resort to 

three dimensions. In order to include seismic loading from far-field earthquakes, a 

substantial extent of the nearby soil also needs to be included in the problem domain with 

appropriate provisions for dynamic boundary conditions. 

 

A comprehensive analysis of the new bridge’s response to conceivable modes of static 

and dynamic loading is underway. However, accurate predictions based on conventional 

dynamic soil-structure interaction formulations that rely on finite element, boundary 

element or various coupled approaches is still largely unfeasible due to a lack of 

sufficient computational resources that can handle a reasonably acceptable degree of 

geometric and material modeling detail. Nonetheless, improvements can be sought by 

increasing the efficiency of existing formulations. In this article we present a 

semi-analytical technique for dynamic soil-structure interaction modeling in the time 

domain with a new infinite element, which should prove computationally efficient and 

effective for handling the types of complex problems such as the one described above. 

 

Dynamic soil-structure and soil-pile-column interaction problems have been investigated 

extensively using the finite element method. However, not many studies have been 

reported using three dimensions in the time domain or that account for nonlinear 

near-field soil behavior. The few studies that are available (Cai, Gould et al. 2000; 

Maheshwari, Truman et al. 2004b; Maheshwari, Truman et al. 2004a) clearly point to the 

importance of soil nonlinearity, particularly with regard to dynamic interaction effects. 

Such nonlinearity is difficult to deal with in the frequency domain and is better handled 

in the time domain. Also crucial to effective three-dimensional modeling of soil-structure 

problems is a proper accounting of seismic wave components at the boundaries of the 

domain. 

 

There are four methods available to simulate dynamic boundary conditions. In the 

transmitting boundary method (Lysmer and Kuhlemeyer 1969; Kausel 1974; Smith 1974; 

Kausel, Rosset et al. 1975; White, Valliappan et al. 1977; Akiyoshi 1978; Wolf 1985) the 

near field (pile cap, piles and a portion of the surrounding soil in Figure 4.1) is modeled 
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using conventional finite elements. The far-field soil, which is unbounded, is represented 

by a transmitting boundary that begins at the interface of the near-field and the far-field. 

However, transmitting boundaries often have at least one of the following restrictions: 

wave propagation through them is dependent on the incidence angle, the effects of 

frequency are not properly accounted for at these boundaries, and they are often 

unsuitable for static problems. Transmitting boundary element methods are difficult to 

implement in the time domain finite element formulations. In addition, in order to obtain 

accurate results, the bounded near field can not be too small. 

 

Another approach is the boundary element method (Zienkiewicz, Kelly et al. 1977; 

Banerjee 1978; Kaynia and Kausel 1982; Beer 1986; Banerjee and Sen 1987). This 

constitutes a more rigorous method for unbounded three-dimensional problems since only 

the infinite boundaries are discretized using only two dimensions. Radiation at the 

infinite boundary is satisfied exactly through an analytical expression that follows from 

particular solutions. However, where such solutions do not exist, or they are extremely 

complex, the method becomes much more cumbersome or even unworkable. The 

boundary element method leads to a non-symmetric stiffness matrix, which further 

reduces its appeal for complex soil-structure interaction problems. As a result, its use has 

been restricted to rather simple cases such as homogeneous and isotropic foundation-soil 

problems with simple geometries and regular boundary shapes. 

 

More recently, the scaled boundary method has received a lot of attention due to its 

suitability for both the finite element and boundary element methods. In this technique, 

spatial discretization is reduced by one through implementation of an analytical solution 

to the problem in the infinite direction. This again allows for exact compliance with the 

boundary conditions in that infinite direction. However, a fundamental solution is not 

required as is the case with the boundary element method, thus making this technique 

much easier to implement for a wide range of problems. However, the approach still 

requires Fourier transformation of the dynamic stiffness matrix from the frequency 

domain into the time domain at the element level, which can be quite time consuming. 

Most practical 3D soil-structure problems involve a large number of scaled boundary 
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finite elements, which is certainly the case for the Kealakaha bridge that is the impetus 

for this study, therefore reducing the appeal of this method. 

 

The infinite element concept emerged in the early 1970s (Ungless 1973; Bettess 1977) 

and has been successfully applied to acoustic (Astley 1983; Gerdes and Demkowicz 1996; 

Gerdes 2000) and fluid wave propagation problems (Saini, Bettess et al. 1978). Zhang 

and Zhao (1987) extended the infinite element technique to soil dynamics to solve 

single-wave problems in connection with strip foundations. However, earthquake shaking 

involves the propagation of compressive, shear and Rayleigh waves, all of which need to 

be considered in the infinite domain. Frequency-dependent infinite elements capable of 

transmitting all three types of waves were developed by Medina (Medina 1980). Zhao 

and Valliappan (1993a) applied such a multi-wave infinite element to 3D medium. In 

order to account for the various wave components, an additional set of nodes for each of 

the three waves is necessary at the interface. An analytical frequency-dependent infinite 

element was developed by Yun et al. (2000). This type of element uses three kinds of 

geometric shapes to facilitate its use with layered soils and complex geometries. It was 

later extended from the frequency domain into the time domain by Kim and Yun (2000). 

Choi et al. (2001) applied this element to earthquake engineering problems in the time 

domain. Based on the two-dimensional analytical frequency domain infinite element 

developed by Yun et al. (2000), Park et al. (2004) presented a three-dimensional 

analytical infinite element in the frequency domain. However, this particular type of 

element can only model the interface between the near-field and the far-field using a 

cylindrical shape. These studies suggest that rigorous infinite element formulations have 

been developed that can deal with static and dynamic load propagation in both time and 

frequency domains. However, the most versatile of these are computationally very costly 

and their application to most practical problems is therefore limited. More efficient 

formulations are needed. 

 

Herein we propose a new semi-analytical 3D infinite element for time domain use that is 

intended to provide substantial computational savings. The appealing features of this new 

element are: (1) it is a 3D infinite element; (2) the solution in the infinite direction is 
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provided by an analytical expression and is therefore known exactly; (3) integration costs 

are reduced substantially for this analytical solution compared to conventional 

Gauss-Laguerre quadrature integration; (4) material nonlinearity in the near-field can 

easily be incorporated into the coupled finite element method in the time domain; (5) all 

three principal seismic waves are considered; (6) earthquake loading can be prescribed on 

the interface; and (7) the element is geometry independent. In this article we provide the 

full formulation necessary for implementation in finite element formulations, along with 

necessary details on the dynamic stiffnesses, equations of motions and a recursive 

procedure for solution in the time domain. 

4.2 Spatial Discretization of Kealakaha Modeling Domain 

Use of this type of new element with respect to the new Kealakaha bridge would be as 

illustrated in Figure 4.1. Since the two piers are located on opposite sides of a very deep 

gulch and are separated by about 110 meters, their respective foundations can be 

considered to rest on separate semi-infinite half spaces. This assumption dramatically 

reduces the number of finite elements necessary to model the near-field, which includes a 

portion of the bridge structure, one of the piers, the group of piles beneath the pier and a 

portion of the surrounding soil. This zone would be modeled using conventional 8-noded 

brick finite elements. The far field would use the new infinite element, which is 

illustrated in Figure 4.2. All the infinite elements in the model have a common scaling  

 

Figure 4.2 Configurations and local coordinates of infinite element (IE) 

 

center (Point O, Figure 4.1), which is conceptually similar to the scaling center proposed 



 66

by Wolf (2003) for his scaled boundary element method. A local coordinate axis can be 

established at the interface between the near and far fields, such that  = 0 for each of the 

infinite elements at the interface, as shown in Figure 4.2. Use of the common center O 

insures that the far field is completely covered by infinite elements, yet there is no 

overlap between them. The lateral surfaces of the infinite element, extending outward 

from the interface, can have any shape at the interface with the near field. This represents 

a distinct improvement upon the type of elements used in previous studies, which are 

only able to consider a cylindrical shape at the interface.  

4.3 The Mapping and Shape Functions of the Semi-Infinite Element 

Mapping for the infinite element from local coordinates (, , ) to global coordinates (x, 

y, z) are given as:  

xx )1(   (2.1a) 

yy )1(   (4.1b) 

zz )1(   (4.1c) 
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and N is the number of nodes on the interface; xj, yj, and zj are global coordinates at nodes 

j, the lj(,) is the shape function in the local - plane, which in the case of a 4-noded 

infinite element can be expressed as: 
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The range of the local coordinates are   [0,  ,  [-1, 1], and  [-1, 1].  

 

It is assumed that a total of M types of waves are to propagate through the infinite 

elements. They are the body wave (P-wave), the shear wave (S-wave), and several 

Rayleigh waves. For time domain analysis, the function space for the M wave functions 

can be approximated as (Kim and Yun 2000; Yun, Kim et al. 2000): 
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The parameter ω stands for wave frequency. The quantities cp, cs, and crn are velocities 

for the P-wave, the S-wave, and the mean of the nth Rayleigh wave in the frequency range 

of interest. Nr is the number of the Rayleigh waves considered in the wave function space. 

The positive constant a takes into account the geometric attenuation of velocity and is 

taken as the same for all the waves. More detailed discussions on the approximation 

functions can be found in elsewhere (Kim and Yun 2000; Yun, Kim et al. 2000). The 

displacement fields for the semi-analytical infinite element can be approximated by shape 

functions based on the wave functions in Equation (2.4): 
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where p(m-1)N+k() is the displacement vector associated with mth wave component at the 

kth node. If the shape function is written in the form: 
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or: 
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then the displacement field can be rewritten in the expression as: 
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The shape function can also be written in matrix form: 
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where I is a 33 identity matrix. The corresponding displacement vector for all degrees of 

freedom in this infinite element can be written in the form 
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The first 3N components on the right hand side of Equation (2.11) are displacements 

associated with the first wave component at all the boundary nodes and can be treated as 

the nodal displacements associated with the interface nodes. The remaining terms are 

referred to as internal displacements by Park et al. (2004), whereas Yun et al (1995) 

classified them into bubble and side modes respectively.  

4.4 Dynamic Stiffness of the Semi-Infinite Element in the Frequency Domain 

At the element level, mass and stiffness matrices are associated with the jth and kth shape 

function as follows (Yun, Kim et al. 1995): 
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where  is the mass density, and Bj and Bk are the strain-displacement matrices associated 

with the jth and kth shape functions Nj and Nk, respectively. Nj and Nk are given by the 

following expressions: 
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where: 
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aNbk  )1(  (b = 1,…, M and for each b, a = 1,…, N) (4.14b) 

D is the elastic stiffness matrix: 
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where D11= D22 = D33=+2; D21 = D12 = D13= D23 = ; D 4= D 5 = D 6 =  ; and  and  

are the Lame constants. J is the Jacobian matrix: 
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The determinant of the Jacobean matrix can be written as: 

JJ 2)1(   (2.17) 

where the -independent matrix is in the form: 
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Substituting Equation (2.18) into Equation (2.17), and then substituting Equation (2.17) 

into Equation (4.12), results in a decoupling of the  terms in the integrants of Equation 

(4.12) from  and . A semi-analytical integration scheme is employed for Equation 

(4.12), whereby an analytical form is used in the infinite  direction and Gauss-Legendre 

quadrature is used in the finite  and  directions. The analytical integration is more 

efficient than the Gauss-Laguerre quadrature numerical integration (Yang and Yun 1992; 

Yun, Kim et al. 1995; Yun, Kim et al. 2000; Park, Watanabe et al. 2004). In fact, the 

solution in the infinite direction is exact and therefore much more accurate than 

numerical Gauss-Laguerre quadrature integration. Semi-analytical integration leads to 

mass and stiffness matrices in which constant matrices are multiplied by 

frequency-dependent multipliers:  
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In Equation 4.20:  
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3 1 31 3 2 32 3 3 33( )m n m n m nE E B E E B E E B       (4.21b) 

1 1 11 1 2 12 1 3 13 2 1 21 2 2 22 2 3 23( ) ( )mn m n m n m n m n m n m nH E E H E E H E E H E E H E E H E E H       

3 1 31 3 2 32 3 3 33( )m n m n m nE E H E E H E E H     (4.21c) 

where: 

ar
bs

bs llr
CC

CC
A 011 

  (2.22a) 

0
2

0

0

0

0

0

2 1
{ }

( ) ( ) ( )

1
{ }

( ) ( )

1
{ }

( ) ( )

s b s a b
r a r a

s b s b s b

b r s r a
a r

s b s b

b r s a r
a r

s b s b

C C C l C r
l l l l

C C C C C C r

C l C r l l
l l

C C C C r

C l C r l l
l l

C C C C r

 

   

   

  
     

    
       
    

      

B

0

0

1
{ }

( ) ( )
s a b

r a
s b s b

r a

r a

C l C r
l l

C C C C r

l l

l l

 

 

 

       
  

  
  

  

      (4.22b) 

2)(

1

bs CC 
H

0

0

0 0

0

0 0

2 1

( )

2 1
{ }

( )

2 1
{ }

( )

s b
r a

s b

b r s
a r

s b

b r s
a r

s b

C C
l l

C C r

C l C r
l l

r C C r

C l C r
l l

r C C r

 

 


 
  

   
  

   
0

0 0

0 0
2

0 0

0 0 0 0
2

0

2 1
{ }

( )

1 2
{ }

( )

1 2
{ }

( )

s a b
r a

s b

a r s b
r s a b r a

s b

r a s b
a b r s r a

s b

C l C r
l l

r C C r

r l l C C r
l C l C l l

r C C r

r l r l C C r r
l C l C l l

r C C r

 

   

     

 


  
   

 
    

     
 

      



 72

0

0 0

0 0 0 0
2

0

0 0
2

0 0

2 1
{ }

( )

1 2
{ }

( )

1 2
{ }

( )

s a b
r a

s b

a r s b
r s a b r a

s b

a r s b
r s a b r a

s b

C l C r
l l

r C C r

r l r l C C r r
l C l C l l

r C C r

r l l C C r
l C l C l l

r C C r

 

     

   

 
    

     
         

   
       

   (4.22c) 

 

If viscous-damping is ignored, the dynamic stiffness matrix S(e)() for the infinite 

element e can be obtained by assembling the static stiffness matrix K(e)() and the mass 

matrix M(e)() in the same manner as for finite elements. After some manipulation, the 

dynamic stiffness sub-matrix for the jth and kth shape functions can be expressed in the 

form: 
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where: 
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)2()1()0(2)2(
2 2 mmmkS  aa  (4.24c) 

)2()1(2
3 2 mmS aa     (4.24d) 

)2(2
4 mS a  (4.24e) 

and S0, S1, S2, S3, and S4 are all constant 33 matrices. After assembling the dynamic 

stiffness for the far-field, the interface node related part can be expressed in the form: 
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4.5 Equation of Motion for Soil-Structure Systems 

Similar to the approach proposed by Choi et al. (2001) for seismic excitation, the 

equation of motion for the near field in the frequency domain can be expressed as: 
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where U() is the vector of total displacement amplitudes in frequency domain and 

)(
~ S  is the dynamic stiffness matrix associated with the interface nodes obtained by 

assembling the dynamic stiffness of infinite elements for the far-field soil region. The 

subscripts r and l denote the degrees of freedom on the right and left hand side of 

near-field boundary, respectively, and n denotes the near-field (soil, piles, and the 

structure of the bridge). The dynamic stiffness matrix for the bounded medium is 

specified as: 

][][)21]([)( 2 MCKS   ii  (2.27) 

where [K], [C], and [M] represent the static-stiffness matrix, the viscous-damping 

(radiation-damping) matrix, and the mass matrix, respectively. These are constant for a 

linear system. The term  stands for material damping (hysteretic-damping) ratio. 

Material damping represents frictional loss of energy, while viscous-damping represents 

energy loss due to the propagation. Viscous damping can be a complicated function of 

elastic and viscous constants. Ff() in Equation (2.26) is the equivalent earthquake force 

in frequency domain along the interface  between the near and far fields, which can be 

determined from the free-field response as (Zhao and Valliappan 1993b): 
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f
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where Uf() and Tf() are the displacement and traction at the location of the interface 

obtained from a free-field analysis in the absence of the structure. A is a constant 

transformation matrix. As suggested by Wolf (1985): 

)()()()(
~

)(  feff USUSF   (2.29) 

where Se
ll () represents the dynamic stiffness matrix of the excluded soil that utilizes 

this material’s properties. In addition:  

)()()(  fef UST        (2.30) 

where Tf () represents the equivalent earthquake force at the location of the interface in 
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the absence of the structure resulting from a given free-field motion Uf (). Equation 

(2.26) can be rearranged to read: 
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 (2.31) 

where: 

)()(
~

)(  USF e  (2.32) 

The right hand of Equation(2.31) represents the total forces acting on the bounded 

domain.  

4.6 Equation of Motion in the Time Domain 

Equation (2.31) in the frequency domain can be transformed into the time domain if 

damping is neglected: 
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 (2.33) 

where u(t) and f(t) are the displacement and the force vectors in time domain; and ff(t) is 

the equivalent earthquake input force along the interface obtained from inverse Fourier 

transform of Ff(). Also: 
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Substituting Equation (2.25) into Equation(2.35), the dynamic stiffness matrix in time 

domain can be obtained in analytical form as: 
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Substituting Equation (2.36) into Equation (2.34), the analytical form of Equation (2.34) 

can be written as: 
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The equation of motion in time domain is obtained by substituting Equation (2.37) into 

Equation (2.33) and rearranging: 
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where: 
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4.7 Recursive Procedure for Solution of the Equation of Motion in the Time 

Domain 

To obtain the system response at time t = nt, the right hand of Equation (2.39) can be 

decomposed into four terms (Kim and Yun 2000): 
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Finally, the equation of motion in the time domain is obtained by substituting Equation 

(4.42) into Equation (2.39) and then substituting Equation (2.39) into Equation (2.38): 
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where t = nt. This equation can be solved using a Newmark integration procedure. 

Equation (2.43) is more efficient than the methods using numerical transformation such 

as those based on discrete Fourier or discrete Lagrange transforms, which usually require 

much more intensive computational efforts. 

4.8 Conclusions  

Comprehensive analysis of a new bridge to be built on the Island of Hawaii requires the 

development of a computationally efficient numerical formulation to capture an adequate 

amount of detail on its 3D seismic response. For this purpose, a new three-dimensional 

semi-analytical infinite element is proposed. The dynamic stiffness matrix of this infinite 

element can be obtained using a semi-analytical method in the frequency domain and 

then be implemented easily in the equations of motion in the time domain. The 

nonlinearity of soil and structure materials, as well as seismic loading can all be 

considered.  
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Chapter 5 

 

 

Conclusions 

 

 

 

In this study, the open source framework OpenSees is used as a research tool. High 

performance brick elements and integration schemes have been developed and coded to 

improve computational efficiency. A new approach to deal with stress and deformation 

consistency between loading stages has also been implemented.  

 

A general midpoint integration algorithm at Gauss point level has been developed in 

tensorial form. This general integration includes fully implicit and explicit integration 

schemes as special cases and therefore is suitable for many J2 and three-invariant 

elastoplastic soil models with isotropic, kinematic, and mixed hardening. The efficiency 

and precision of implicit and explicit integration schemes has been analyzed with respect 

to four soil models. The comparisons show that, contrary to conventional wisdom, 

explicit integration sometimes offers advantages over fully implicit integration for 

complex constitutive soil models such as the general Cam-clay model. 

 

Lateral resistance of single piles in cohesionless soils has been investigated in detail. 

Findings show that the coefficient of lateral earth pressure at rest, soil unit weight, and 

friction angle are important in the determination of lateral pile resistance capacity, but 

this occurs indirectly through Poisson’s ratio and the pressure-dependent Young’s 

modulus. Soil resistance increases as the Young’s modulus of the soil and the stiffness of 

the pile increase. The lateral resistance of the soil and the capacity of the pile are not 

linearly related to the diameter of the pile, as simplified methods have suggested.  
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Dynamic soil-pile-bridge interaction system analysis has been addressed in this study 

though development of a set of theoretical formulas for seismic analysis in the time 

domain. These relationships employ a newly developed semi-analytical infinite element 

for the infinite field that is computationally economical and is able to handle arbitrary 

problem geometries. These equations have been developed to the point where they are 

ready to be coded into OpenSees.  

 

In combination, the computational improvements presented in this study should provide 

sufficient efficiency to begin analyzing at least sections of the replacement Kealakaha 

bridge, such as one pier, pile cap, piles and nearby soil. 
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Appendix A 

 

 

Constitutive Model Derivatives 

 

 

 

The following derivatives are necessary for implementation of the constitutive models in 

a numerical code such as OpenSees. 

General derivatives:  
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where: 
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Yield function for Drucker-Prager model: 
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Drucker-Prager model derivatives: 
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Yield function for extended Mohr-Coulomb model: 
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Extended Mohr-Coulomb model derivatives:  
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Yield function for modified Cam-clay model: 
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Modified Cam-clay model derivatives: 
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Yield function for general Cam-clay model: 
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where α and N(θ) are the same as in Equations (A-28) and (A-27). 

General Cam-clay model derivatives: 
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Set: 
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where: G = Acos, A = 2(1 - e2), B = 2e - 1, F = (Acos2 + D)1/2, D = 2 - 4e + 3e2,    

 K = Acos2 + E, and E = 3 -4e +2e2. 

The first derivative of )(N : 
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The Role of the Intermediate Stress in Offshore Slope 

Sediment Modeling 

 

Brandes, H.G. and Wang, S. (2006) 

Proceedings, 16th International Offshore and Polar Engineering Conference, San 

Francisco, California, May 28–June 2. 

 

 

Abstract 

Two intersecting slopes of finite height are modeled to analyze their stress-strain 

behavior leading up to impending collapse. Three-dimensional brick elements and two 

elasto-plastic constitutive models are considered. One of these models incorporates the 

effect of the intermediate principal stress, and the other one does not. Results indicate 

moderately significant differences in stress path response and overall strains and 

displacements. 

 

Keywords: Elasto-plastic, slopes, marine sediments, modeling, OpenSees, finite elements 

 

B.1 Introduction 

 

Submarine slopes have captured the imagination of scientists ever since the Challenger 

expedition of 1872-1876 when the first set of extensive bathymetric surveys was 

conducted using simple depth soundings at hundreds of locations throughout the world. 
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The continental slope and rise, particularly where hydrocarbons have attracted the 

attention of oil companies, has become the focus of intense research in recent years to 

characterize and quantify geohazards associated with mass wasting. Of current interest is 

the ability to quantify the displacement of large masses of sediments that could pose a 

risk to structures placed in vulnerable environments. Catastrophic failures are of obvious 

concern, but so are limited deformation processes that do not necessarily lead to a 

complete collapse. These may involve flows or slides of limited down-slope extent, 

which nonetheless can cause substantial damage to structures such as platform footings 

and anchors placed in their path. 

 

Most of the work that has been conducted to date on slope stability has focused on 

two-dimensional (plane strain) cross sectional idealizations of what in reality are often 

highly complex three-dimensional geometries. This can result in grossly misleading 

findings (Duncan and Wright, 2005). The typical constitutive model that is implied in 

most limit equilibrium calculations consists of a simple rigid-perfectly plastic 

Mohr-Coulomb model, which is entirely inadequate to investigate pre-failure 

deformations. A more versatile and accurate approach would be one based on an 

elastoplastic soil model within a numerical framework that allows for three-dimensional 

geometries, such as the finite element method. This type of an analysis is rarely carried 

out for a number of reasons. Brandes and Shentang (2005) investigated pseudo 

three-dimensional slopes in connection with two advanced elastoplastic soil models, but 

only for a simple semi-infinite geometry where displacements were constrained in the 

down-slope and vertical directions. In this article we analyze a hypothetical configuration 

consisting of two intersecting slopes that are loaded through the process of self-weight 

consolidation. Two elasto-plastic constitutive models are considered, one of which is 

clearly more versatile than the other one since it takes into account the role of the 

intermediate principal stress. 

 

Computations are carried out using the OpenSees code (Open System for Earthquake 

Engineering Simulation; Pacific Earthquake Engineering Research Center, 2004). 

OpenSees is an open-source software framework consisting of a set of interrelated classes, 
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designed as independent as possible for maximum flexibility, which control data structure, 

material behavior models, hierarchical element types, solution algorithms, integrators, 

equation solvers, databases, visualization and communication procedures. OpenSees has 

seen enormous growth in the last few years as developers and researchers have made use 

of the software’s inherent flexibility to add additional capability (Elgamal et al., 2003). 

OpenSees has been adapted to solve a wide range of problems involving soil, 

soil-structure interaction, earthquake shaking, and reliability assessment (Jeremic, 2003). 

It has also been adopted by the Network for Earthquake Engineering Simulation as its 

platform for simulation and visualization. 

 

B.2 Slope Geometry 

 

A simple three-dimensional geometry has been chosen for all the computations (Figure 

B.1). It consists of two intersecting slopes, Slope I and Slope II, inclined at 35o and 20o 

relative to the horizontal, respectively. A number of points are shown for reference. The 

finite element mesh consists of 640 brick elements with 14 Gauss integration points and 

20 nodes each, for a total of 3221 nodes. The bottom of the geometry is fixed and the two 

vertical boundaries are not allowed to move in their respective normal directions. All 

others surfaces are free. 
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Figure B.1 3D slope geometry. 

 

B.3 Constitutive Models 

 

Many constitutive models have been proposed for marine sediments, ranging from simple 

elastic to multi-surface elasto-plastic models with complex yield and hardening laws. The 
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latter are often impractical since they usually require material parameters that are difficult 

to obtain. Here we compromise by selecting two constitutive models that embrace 

fundamental elasto-plastic response and frictional failure without hardening, yet are 

significantly different from each other in that one considers the effect of the intermediate 

principal stress and the other one does not. 

 

The simpler of the two is the Drucker-Prager (DP) model (Drucker and Prager, 1952). It 

assumes a yield surface given by: 

f p q k    (B-1) 

where p is volumetric stress, q is deviatoric stress, and a and k are two materials constants. 

These constants are conceptually similar to the Mohr-Coulomb strength parameters f and 

c, and indeed are related to them: 
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It should be noted that a and k need to be determined from triaxial compressions tests, 

rather than from extension or other types of strength tests, since deformation of the slope 

is characterized by active conditions. This model is adequate for making simple 

elasto-plastic predictions, although the circular nature of the failure cone does not allow 

for a difference between compressive and tensile yield strengths. 

 

Consideration of the third stress invariant allows for a more versatile failure cone to 

overcome this shortcoming. One relatively simple model that does account for the 

intermediate stress is a variant of the Mohr-Coulomb model, here referred to as the 

Extended Mohr-Coulomb (EMC) model. Its yield surface is given by: 
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and: 
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The angle θ is referred to as the Lode angle. Its effect is to produce a yield surface that is 

not in the form of a circular cone, as is the case for the DP model. Both the DP and EMC 

models adopt the non-associated flow rule. These models have been coded into OpenSees 

as part of this study. 

 

Material parameters were selected to be representative of soft, fine-grained marine 

sediments. The friction angle is assumed to be 10o, the cohesion a nominal 5kPa, the 

initial elastic Young’s modulus 10.4 MPa, and the saturated unit weight 14.5 kN/m3. 

 

B.4 Loading 

 

Herein we focus on the process of self-weight consolidation. In other words, loading is 

provided by the gradual imposition of gravitational stresses. This is somewhat similar to 

what would happen as marine sediment, which perhaps has been transported by the 

overlaying water column, settles out of solution and begins to dewater and take on a 

structure of its own. Deposition of layers of sediment on the continental slope, rise and on 

adjacent areas of the deep ocean seafloor indeed often follows from the transport of 

fluidized sediment masses in the form of mudflows, turbidity currents, grain flows and 

various other modes of mass wasting, which eventually come to a rest as the seafloor 

levels out. 

 

In the problem the final self-weight load is applied in 40 equal increments. Drained 

conditions are assumed, which implies that the consolidation process occurs slowly 

enough so that volume changes occur without the accumulation of excess pore pressures. 



 93

This may or may not be realistic, but it renders the problem much more straightforward 

for analysis. Emphasis can be placed on the resulting deformations without the 

complicating effect of time. 

The problem has been set up in such a way that collapse occurs during self-weight 

loading. Specifically, failure conditions develop along a three-dimensional rupture 

surface after 70% of the full load has been applied for the DP model. Failure with the 

EMC model occurs after only 60% of the target load has been reached. The failure 

pattern is biased toward Slope I since this is the steeper of the two (Figure B.2). In fact, 

the three-dimensional rupture occurs virtually entirely within Slope I. The shape of the 

failure surface is similar for the two models. 

 

Failure is associated with imminent collapse and results when stresses everywhere on the 

failure surface have reached the yield condition and the available strength has been fully 

mobilized along the rupture surface. At that point equilibrium is lost and numerical 

difficulties ensue. The location of the collapse surface can be identified by examining the 

distribution of Gauss points that have yielded. For example, Figure B.3 shows points in 

the yz-plane that have yielded for the DP model after 70% load, i.e. at the point of 

collapse. The shape of the failure surface approaches that of toe circle that extends almost 

to the rigid bottom. This is as expected for finite-height homogenous slope deposits with 

a shallow firm base (Terzaghi et al., 1996). 

 

 

Figure B.2 Failure pattern for DP model. 
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Figure B.3 Yield locations in yz-plane (DP soil model). 

 

B.5 Stress Path Predictions 

 

Not all stress points reach failure at the same load stage. Also, there are differences in the 

predicted stress paths produced by the two soil models. It is instructive to examine the 

stress paths followed by three Gauss points at different locations in the slope domain 

(points D, E and F in Figure B.1). Point D is located adjacent to the yz-plane. The stress 

paths followed for the two soil models at point D are shown in Figure B.4. Both soil 

models are set up to have the same initial yield surface and they behave similarly in the 

elastic range. In the case of the DP model, the stress point reaches failure and then 

continues along the corresponding failure surface. Collapse, which as already mentioned 

corresponds to the development of a kinematically viable rupture surface where all the 

available strength has been mobilized, does not develop until the end of the dashed stress 

path. As Point D continues to yield, stresses are redistributed until final collapse does 

occur. In the case of the EMC model, as the stress path approaches the initial yield 

surface, the failure surface in qp-space changes in size so that the final failure envelope is 

located below the initial one. This is due to the non-circular nature of the EMC model. It 

appears that the stress path exceeds the final failure surface for a time and then 

approaches it from above. To realize that the principles of plasticity are not being violated, 
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one must consider the stress paths and the shape of the failure envelope in three 

dimensions (lower part of Figure B.4). This clearly shows that the stress path does not 

exceed the failure surface. Nonetheless, stress redistribution after initial yielding is more 

effective for the DP model, which results in a higher load capacity before collapse occurs. 

 

 

Figure B.4 Stress paths for point D. 

 

Point E, which is located where slopes I and II intersect, reaches yield conditions with 

both soil models, however it does so relatively late in the loading sequence (Figure B.5). 

As a result, scollapse occurs soon after and little load redistribution occurs after E reaches 

the failure surface.  

 

If we examine stress conditions at the far end of slope II, i.e. at point F, we find that this 

particular point does reach failure conditions according to the DP model, but not 
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according to the EMC model (Figure B.6). Even though failure stresses are achieved with 

the DP model virtually simultaneously with the onset of collapse, neighboring stress 

points have not reached stress conditions corresponding to failure and therefore the 

rupture plane does not extend laterally to encompass point F. 

 

Finite element calculations are able to capture the development of the stress conditions 

necessary to cause collapse along a rupture surface, as well as the associated 

redistribution of stresses that accompanies this, which of course is not possible with 

simple limit equilibrium methods. In addition, the need for recursive searching for the 

critical failure surface, as is the case in standard limit equilibrium methods, is not 

necessary. 

 

 

Figure B.5 Stress paths for point E. 
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B.6 Displacement Predictions 

 

Another advantage of finite element calculations that use a reasonable elasto-plastic soil 

model is that they can provide detailed displacement predictions. These are important for 

estimating lateral earth pressures prior to and during collapse. In general, these pressures 

can be quite different from those calculated using simpler limit methods. In addition, the 

overall deformation pattern, particularly in three dimensions, can provide important clues 

on the nature of ensuing mass wasting processes. For example, it may be postulated that 

when significant down-slope deformation occur in the soil mass above the rupture surface, 

the post-failure displacement mode may tend towards that of a flow. Conversely, limited 

down-slope displacements in the overlaying mass may signify an impending rigid 

block-type of deformation pattern, at least during the initial phases of the inertial mass 

wasting process. 

 

Figure B.6 Stress paths for point F. 



 98

 

Figure B.7 Deformed mesh - DP model (exaggerated by a factor of 15) 

 

The overall deformation pattern for the two slopes at the point of collapse is shown in 

Figure B.7 for the DP model. As expected, the largest amount of displacement occurs 

near the crest of the slope, which is free to move. Also, significantly more deformations 

develop in slope I as compared to slope II. This is apparent by contrasting the deformed 

mesh as viewed from the yz (Figure B.8) and the xz boundaries (Figure B.9). 

Superimposed on these views are the velocity vectors at the end of the analysis. The face 

of slope I has undergone significant down-slope deformation due to the widespread 

amount of yielding, whereas the face of slope II remains nearly unchanged since it has 

not yielded to any appreciable degree. 

 

Figure B.8 Deformed mesh viewed from yz boundary (DP model) 
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Figure B.9 Deformed mesh viewed from xz boundary (DP model) 

 

Predictions of deformations can be examined in more detail by looking at points D, E and 

F. Displacements in the three directions x, y and z are shown in Figure B.10 from the start 

of loading. Load factor in Figure B.10 refers to the percentage of the ultimate self-weight. 

Points D and F are located on vertical boundaries so that D is restricted from moving in 

the x direction and F is similarly restricted in the y direction.  

 

Figure B.10 suggests that the faces of slopes I and II are moving downward and outward. 

Point D moves further in the x direction than point E, while points D and E move about 

the same amount in the y direction during most of the loading. In the end though, point D 

does move somewhat further in the outward y direction than point E, particularly as 

yielding takes place. All three points undergo similar vertical deformations during elastic 

loading, but at the end of the analysis points E and F have settled considerably more. This 

can also be noted in Figure B.7. 

 

Similar observations can be made by considering Figure B.11, which groups predictions 

in all three directions for each of points D, E and F. Interesting to note is the behavior of 

point E, located at the intersection of slopes I and II. This point displaces significantly 

more in the y direction than the x direction. This is to accommodate the larger outward 

movement of the face of slope I, which occurs predominantly in the y direction and to a 
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Figure B.10 Displacements at points D, E and F (Model DP). 
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Figure B.11 Displacements in x, y and z directions (Model DP). 



 102

lesser degree in the x direction. Thus the down-slope displacement of both slopes I and II 

is truly three-dimensional and is a function of the relative inclination of the two 

intersecting slope faces. 

 

Although somewhat different in terms of the predicted deformations at failure, the overall 

pattern of displacements for the EMC model is similar to that for soil model DP. For 

example, the deformed mesh in the yz plane for soil model DP (Figure B.8) can be 

contrasted to that for the EMC model in Figure B.12. In the DP model the crest of the 

slope is seen to settle and tilt backward to a larger extent than in the EMC model when 

collapse becomes imminent. Also, the bottom of the slope face protrudes out beyond the 

fixed bottom for the DP model, but not so for the EMC model. 

 

To further investigate differences in predictions from the two models, we can again focus 

on Point E, which is removed a substantial distance from all vertical boundaries. A direct 

comparison between displacements using the two soil models is shown in Figure B.13. 

As expected, predictions prior to yielding are the same since both models assume a 

similar elastic response. However, upon yielding the response is significantly different. 

The DP model estimates larger x, y and z displacements at the point of collapse compared 

to the EMC model. This is partly because of a more effective re-distribution of stresses in 

the DP model that allows for a larger ultimate load, but also because of different stress 

paths followed by both models upon yielding. The latter effect is evidenced in the y and z 

displacement predictions in Figure B.13. 

 

Figure B.12 Deformed mesh viewed from yz boundary (EMC model) 



 103

 

 

 

Figure B.13 Model comparisons for displacements at point E. 
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B.7 Conclusions 

 

Elasto-plastic analysis of three-dimensional slopes is clearly superior to simple limit 

equilibrium, particularly for three-dimensional geometries. Realistic soil models 

embedded in a finite element framework can provide important deformation predictions 

and have the potential to model the progress of failure on rupture surfaces. However, as 

this study shows, there can be significant differences in predictions depending on the 

particular soil model chosen. Given the large number of such models that have been 

proposed, careful consideration needs to be placed on selecting an appropriate one. The 

choice of such a model depends on expected stress conditions and the ability to properly 

characterize the relevant material parameters. With regard to fine-grained marine 

sediments, it may often be advisable to compromise by selecting a moderately 

comprehensive soil model that incorporates the most important aspects of constitutive 

behavior yet is not so complex as to make the effort of prediction overly cumbersome. 

 

Two particular soil models that may very well constitute such a compromise have been 

coded into the OpenSees code and their predictions are compared for a hypothetical 

embankment-type soil deposit consisting of two intersecting slopes. Although both 

models predict similar elastic behavior, they each lead to somewhat different stress and 

strain states when collapse occurs. In particular, the DP model is more effective at 

re-distributing stresses throughout the slope geometry than the EMC model, hence 

collapse occurs at a higher load intensity. 
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Appendix C 

 

OpenSees Modeling of the 3D Plastic Behavior of 

Underwater Slopes: Achievements and Limitations 

 

Brandes, H.G. and Wang, S. (2005) 

Frontiers in Offshore Geotechnics, ISFOG 2005, Proceedings of the 1st International 

Symposium on Frontiers in Offshore Geotechnics, Eds: S. Gourvenec and M. Cassidy, 

New York: Taylor & Francis, pp. 897-902. 

 

 

Abstract 

The plastic response of two hypothetical slopes in response to surface loading from 

sediment deposition is examined with reference to two constitutive models. Predictions 

using a cap model are judged to be more reasonable than those from a noncap model and 

significant differences are noted between 2D and 3D geometries. Limitations are also 

discussed as far as realistic modeling of large offshore slopes is concerned. 

 

 

D.1 Introduction 

 

Modeling and simulation of complex nonlinear geotechnical problems has usually meant 

the use of large commercial finite element programs. Although some of these are quite 

powerful, the underlying codes are generally not accessible to benefit from 

community-wide development. Realizing that major advances in modeling and simulation 

were necessary in specific fields such as earthquake engineering, the National Science 

Foundation of the United States has supported the development of OpenSees (Open 

System for Earthquake Engineering Simulation; Pacific Earthquake Engineering Research 
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Center, 2004). OpenSees is an open-source software framework consisting of a set of 

interrelated classes, designed as independent as possible for maximum flexibility, which 

control data structure, material behavior models, hierarchical element types, solution 

algorithms, integrators, equation solvers, databases, visualization and communication 

procedures. OpenSees has seen enormous growth in the last few years as developers and 

researchers have made use of the software’s inherent flexibility to add additional capability 

(Elgamal et al., 2003). OpenSees has been adapted to solve a wide range of problems 

involving soil, soil-structure interaction, earthquake shaking, and reliability assessment 

(Jeremic, 2003). It has also been adopted by the Network for Earthquake Engineering 

Simulation as its platform for simulation and visualization. 

 

In this article we report on two of a series of specific soil plasticity models that we are in 

the process of adding to OpenSees and examine their prediction with regard to simplified 

two- and three-dimensional hypothetical slopes, which may be useful for understanding 

the behavior of slopes in the offshore environment. Of course, techniques other than the 

finite element method have been used extensively to analyze slopes, including limit 

analysis (bearing capacity, limit equilibrium) and various probabilistic approaches 

(Abramson, 2002; TRB, 1996). However, they do not provide the level of stress and strain 

detail that a numerical solution can provide and therefore generally provide less insight 

into the mechanics of deformation and failure of slopes. 

 

D.2 Constitutive Models 

 

A hierarchy of constitutive models has been proposed for frictional soil materials, ranging 

from the elementary Mohr-Coulomb model to sophisticated hardening plasticity models 

that are able to account for the most important aspects of soil behavior observed through 

experimentation. The perfectly-plastic Mohr-Coulomb model is adequate for simple force 

limit equilibrium calculations regarding slope stability, bearing capacity of footings, and 

active/passive pressures on retaining walls. However, generalization of the Mohr-Coulomb 

criteria to include the effect of all principal stresses and plastic yield deformations leads to 

unrealistic volume change predictions (Drucker et al., 1957) and numerical difficulties. 
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The latter ones arise from the discontinuity of the hexagonal yield surface in stress space 

along principal stress planes. Drucker and Prager (1952) proposed a generalization of the 

Mohr-Coulomb model that takes into account the effects of all the principal stresses and 

that is more amenable to numerical computation. Nonetheless, the Drucker-Prager model 

in its original form assumes similar behavior in compression and tension and does not 

correctly predict volume compression that accompanies increases in mean pressure. 

 

An improvement upon the original model proposed by Drucker and Prager, referred to 

herein as the Extended Drucker Prager Model I (EDP-I), has been coded into OpenSees as 

part of this study. This model is conceptually similar to the one that is available in the code 

ABAQUS (2003). Its chief improvement upon the original Drucker-Prager model is that 

the resulting yield surface is non-circular, hence allowing for a compressive yield strength 

that is greater than the tensile yield strength. Soil is allowed to harden and/or soften 

isotropically. The flow rule allows simultaneous inelastic dilation and inelastic shearing 

(Figure C.1). A linear yield criterion is assumed: 

f  t  p tan  d  0  (C-1) 

where p = volumetric stress;  is the slope of the linear yield surface in the p – t stress plane 

(i.e. friction angle); d represents the material’s cohesion; and t is the deviatoric stress 

(ABAQUS, 2003). 
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Figure C.1 Extended Drucker Prager model (EDP-I). 
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Frictional soil models with a single surface, such as the one just described, are unable to 

correctly account for volume compression upon yielding. It is well known that normally 

consolidated clays and loose sands exhibit a decrease in volume during shear, often almost 

from the beginning of loading. To correctly account for this type of behavior, a range of 

more versatile models have been proposed that incorporate a second yield surface, or cap, 

which grows or shrinks depending upon stress history. One such model, referred to herein 

as the Modified Drucker-Prager cap model (MDP-C), has also been coded into OpenSees 

(Figure C.2). Again, this model is similar to one available in ABAQUS. Frictional failure is 

defined as in the EDP-I model, hence Equation (C-1) applies. The elliptical cap is given by 

the equation: 

2
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where R = a cap shape constant;  = a small number (typically 0.01 to 0.05); pb = the 

hydrostatic compression yield stress; and pa = an evolution parameter that is a function of 

plastic volumetric strain controlling the amount of hardening or softening (ABAQUS, 

2003). In this equation d is the t-intercept at p = 0 (Figure C.2). The parameter  is used to 

define a transition yield surface between the one given by Equations (C-1) and (C-2). This 

transition yield surface has the following functional form: 

2 2[ ] [ (1 )( tan )] ( tan ) 0
cost a a af p p t d p d p
   


          (C-3) 

The material parameters assumed for the numerical analysis are listed in Table C-1. In 

addition to the EDP-I and MDP-C models, we are also in the process of adding additional 

constitutive models into OpenSees, such as a new and more versatile form of the modified 

Cam clay model. 

 



 110

(d+patan)

d+patan

R(d+patan

f t

fc

d

pa

pb

f s

t

p

 

Figure C.2 Modified Drucker Prager model (MDP-C). 

 

D.3 Slope Geometry And Modeling Approach 

 

Computations were carried out using 20-node brick elements arranged to simulate 2D and 

3D semi-infinite slopes. By 2D we mean hypothetical slopes of uniform depth and width 

(Figure C.3), whereas by 3D we mean equivalent slopes that also vary in depth along the 

cross-slope direction (Figure C.4). The intention in selecting these two geometries was to 

explore differences between conventional 2D modeling and potentially more realistic 3D 

modeling. Another aspect that is of interest is the loading of the sloping seafloor by 

sediment deposits (surcharge loading) that may have been transported by mass wasting or 

other means. This was modeled in a very simple fashion by adding sediment thickness over 

a portion of the 2D and 3D slopes and examining the resulting behavior (Figure C.5). The 

intention was to illustrate, in a very simpleminded way, the effects of placing a sediment 

surcharge on the seabed that is of limited extent and varies in load intensity in the 

down-slope direction. The slopes considered were 5m wide, 10m high and 20m long. The 

down-slope angle was 25o. The 3D geometry varies from the 2D one only in the sense that 

the bottom is slanted 40o in the cross-slope direction, as shown in Figure C.4. The slope 

itself was discretized using 12x6x15 elements, whereas the surcharge thickness consisted 

of 6x6x3 elements. 
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Table C-1 Soil properties 

 Slope Surcharge
c (kPa) 5 100
 (Deg.) 28 37
pd (kPa) 150 250
E (kPa) 17,400 17,400
E0 (kPa) 17,400 17,400
υ 0.35 0.35
(kg/m3) 1,478 3,000
k 1.0 1.0
α 0.1 0.1
R 0.6 0.6
d 10.5 199.7
tan 1.11 1.51

 

The parameters listed in Table C-1 are typical for fine-grained marine sediments, with the 

exception of the density for the surcharge load. This density was chosen to be much higher 

than that of the slope sediment to focus attention on the behavior of the slope sediment and 

not on the surcharge material. In fact, the surcharge was assumed to have purely elastic 

properties. 

 

 

 

Figure C.3 2D slope geometry before and after self-weight consolidation 
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In all cases, time-dependency and associated primary consolidation were ignored. In other 

words, drained and/or long-term conditions were assumed to prevail. This may be adequate 

for medium and deep water slopes where sedimentation processes often occur over very 

long periods of time. In each case, the semi-infinite slope geometry was allowed to 

undergo self-weight compression first, followed by ‘excess’ loading induced by 

embankment-type sediment heaps as shown in Figure C.5. Self-weight compression was 

forced to occur in the vertical direction only by imposing roller boundary conditions on all 

the vertical faces and rigid conditions along the bottom. The seabed surface was allowed to 

deform freely. During excess loading the vertical faces on the upper and lower ends of the 

boxes were changed from rollers (which allowed only vertical deformations) to stress 

boundaries with initial lateral pressures equal to those at the end of the prior self-weight 

stage. Stress-strain behavior was modeled using the two constitutive models described 

previously. These models were implemented using a forward Euler stress incrementation 

technique for optimum stability. 

 

D.4 Results 

 

The first stage of the analysis involves modeling of the self-weight consolidation process. 

Roller boundary conditions on the vertical faces lead to vertical displacements (Figure C.3 

and Figure C.4) and vertical stress gradients proportional to the sediment weight. Although 

the distribution of resulting displacements and stresses is reasonable, it can hardly be said 

that conventional numerical modeling of the process of self-weight consolidation is an 

accurate representation of what occurs in the field. After all, it is well known that complex 

sedimentary and post-depositional processes, which are difficult to understand and model, 

play an important role in subsequent slope behavior. Nonetheless, the conventional 

numerical approach allows the setting of initial stresses that satisfy equilibrium and 

boundary conditions. 
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Figure C.4 3D slope geometry before and after self-weight consolidation 

 

 

Figure C.5 2D slope with surface surcharge 

 

Following self-weight consolidation, the surcharge load shown in Figure C.5 was added to 

the surface of the 2D and 3D slope geometries, and the boundary conditions along the 

upper and lower vertical faces were relaxed to allow for global shearing. In addition to 

general down-slope deformation, localized distortion in the slope region beneath the 

surcharge load occurs. The overall response though is very much dependent on the plastic 

constitutive model used. In terms of stresses, yielding is limited to the region immediately 
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beneath the surcharge load for the non-cap EDP-I model, whereas yielding is much more 

widespread (but does not occur everywhere) when the MDP-C cap model is used (Figure 

C.6 and Figure C.7). The reason for this of course is the presence or absence of the 

non-frictional yield cap. Stress points in the slope near the surcharge yield because they 

reach the frictional surface, i.e. Equation (C-1), regardless of which of the two models are 

used. On the other hand, stress points further away from the surcharge remain in an elastic 

state in the EDP-I model, but in many instances are seen to yield with the MDP-C model as 

they reach either the general cap, Equation (C-2) or the transition yield surface Equation 

(C-3). 

 

Figure C.6 Yield points for EDP-I model 

 

This difference in behavior can be seen by following the stress path of points A and B, 

identified in Figure C.3. Point A, close to the surface of the slope and immediately beneath 

the surcharge, is seen to yield as it reaches the frictional surface, regardless of which model 

is used, whereas the deeper point B remains in an elastic state in the EDP-I model but 

yields by reaching the cap in the MDP-C model (Figure C.8 and Figure C.9). It should be 

noted that the surcharge itself was given material parameters such that it would not yield in 

order to focus on the response of the slope itself. 
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Figure C.7 Yield points for MDP-C model 
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Figure C.8 Selected stress paths for model EDP-I (2D) 

 

As already mentioned, the cap model has a distinct advantage over the non-cap model in 

that it is able to predict either compressive or expansive plastic volumetric strains, 

whereas the non-cap model is limited to the prediction of expansive inelastic strains only. 

For example, Figure C.10 shows plastic and total volumetric strains at points A and B for 

the MDP-C model. Point A reaches the frictional surface, such that the normal  
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Figure C.9 Selected stress paths for model MDP-C (2D) 

 

incremental plastic strain points upward and to the left, thus indicating plastic dilation. On 

the other hand, point B first reaches the cap, where the incremental plastic strain point 

upward and to the right. As a result, plastic volumetric strain is compressive. In other 

words, shallow slope sediment subjected to loading by the surcharge will tend to expand 

and shear under relatively low confining pressure, whereas deeper sediment will undergo 

less shearing and some volume compression at higher confining pressure. This makes 

intuitive sense and suggests that modeling of elasto-plastic behavior of slopes should 

always employ a cap model. Naturally, the MDP-C model chosen for this study is only one 

such model and many others can be considered. Among these are the widely-used modified 

Cam Clay model (Roscoe and Burland, 1968) and many others. One important difference 

between the MDP-C and the modified Can Clay model is that the former one provides a 

seamless transition from the cap to the frictional shear surface by means of the transition 

surface (Figure C.2, Equation (C-3)). While this may seem desirable since it allows for a 

smooth transition in terms of the direction of the incremental plastic strain at the 

intersection of the frictional and cap surfaces, it can lead to difficulties with certain stress 

integration algorithms (such as the backward Euler method) in the region of the transition 

yield surface when spanning the elastic-inelastic divide. 
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Figure C.10 Volumetric strains for model MDP-C (2D) 

 

The contrast in predictions of global shear deformation from the two models can be 

considered with reference to Figure C.11. This figure shows downslope deformations 

along profile C, located at the lower end of the slope (Figure C.3 and Figure C.4). 

Interestingly, the choice of constitutive model makes little difference for the 3D slope 

geometry, but is very important for the 2D geometry. In the latter case, more widespread 

yielding leads to more significant shearing when using the MDP-C model. It is likely that if 

a deeper slope had been selected, the difference in predictions between the two constitutive 

models may have been more dramatic in the 3D case as well. The 3D configuration leads to 

smaller overall displacements due to a smaller volume of material that is subject to 

deformation. It is obvious that 2D simplification of real slopes may be inadequate to 

capture the true behavior of submarine slopes, particularly in cases where there are 

significant geometric and material variations in the cross-slope direction. 

 

Another view of overall deformation is captured in Figure C.12, which shows 

displacements on a cross section of the 2D slope. As expected, the effect of the surcharge is 

to produce a curved indentation in the underlying slope sediment, along with a passive 

bulge of material in the front of the surcharge. As already noted, this occurs as stresses 

along the interface reach frictional yielding and significant plastic shearing. 
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Figure C.11 Downslope displacement profiles 

 

Figure C.12 Cross section of deformed 2D mesh. 

 

D.5 Final Comments 

 

The boundary value problem chosen for this study is not meant to be an accurate 

representation of any particular field slope. Instead, it was selected to investigate generic 

modeling issues related to constitutive soil behavior, slope geometry and surcharge 

loading. Monumental obstacles remain in achieving satisfactory models of offshore slopes 

such as may be found along the continental slope and rise. Obstacles include accurate 

time-history simulation of sediment transport and deposition processes, generating 

reasonable geometries that incorporate typical field dimensions, as well as reliable and 
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sufficient sediment characterization. It is not uncommon that gravity-driven slope 

processes involve sediment sequences that are tens or hundreds of meters deep and 

hundreds of meters to many kilometers in horizontal extent. This would require massive 

meshes and therefore enormous computational resources. For reference, the nonlinear 

analysis conducted for this study involved on the order of about 1,100 elements with 20 

nodes each and some 40 or so load steps. Each run took about 8 hours when using the 

EDP-I model and about 28 hours when using the MDP-C model, all on a top of the line PC 

platform. Even if more optimum modeling setups can be conceived of, current 

computational capabilities are still unable to cope with the very large slope geometries that 

need to be considered to investigate the type of large scale mass wasting and sediment 

transport processes that are found on the continental slope and rise. 

 

It is therefore important that quantum advances be made in computational resources and 

code optimization. A simple switch to supercomputer platforms is unlikely to be sufficient 

without a parallelization of codes. Promising in this regard is that the OpenSees program 

used herein is now in the process of being parallelized by its original developers. The 

intention is to continue our own modeling work by developing the requisite parallel 

constitutive models to complement these other efforts. 
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Appendix D 

 

 

Cyclic Simple Shear Testing and Modeling of an 

Offshore Fine Sand 

 

Brandes, H.G., Seidman, J. and Wang, S. (2005) 

Proceedings, 15th International Offshore and Polar Engineering Conference, 2:679-689. 

 

 

Abstract 

Results from a series of cyclic simple shear tests are presented to examine the response of 

a shallow-water sand from the west coast of South Florida under constant volume 

conditions typical of earthquake or wave loading. Both low and high-density states were 

investigated. The strongly nonlinear response is then modeled with some success using a 

nonlinear cyclic model consisting of a hyperbolic stress-strain relationship and a pore 

pressure generation equation. 

 

Keywords: Cyclic simple shear, cyclic soil modeling, testing, seabed sand. 

 

D.1 Introduction 

 

Direct simple shear (DSS) tests were conducted on a seabed sand from shallow waters off 

Tampa Bay, Florida, obtained as part of the U.S. Office of Naval Research’s Mine Burial 

Prediction program. The sand was collected in bulk from the seabed by divers. It consists 

of 11% calcium carbonate, which is in contrast to coarser sediments only a few tens of feet 

away that are mixed with more abundant shell fragments and other reefoidal fragments that 

increase the bulk carbonate content to 65%. The non-carbonate portion of the seabed sand 

consists of semi-angular quartz grains in the fine sand range (Figure D.1). This quartz 
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fraction was transported to the Tampa Bay offshore region from the northern Gulf of 

Mexico by nearshore currents. The sand is well sorted and consists predominantly of grain 

sizes between 0.1 and 0.4 mm (Figure D.2). The bulk specific gravity is 2.74. No 

cementation was evident. 

 

The purpose of this study was to gain further understanding of the cyclic behavior of 

seabed sands, which may be subjected to rapid time-varying loads by either shallow water 

waves or earthquakes. 

 

D.2 Testing Procedures and Program 

 

The DSS tests were performed at the University of Hawaii using the new generation DSS 

equipment developed by the Norwegian Geotechnical Institute. The specimen is contained 

in a wire-reinforced membrane that keeps the material from expanding horizontally, but 

allows lateral shearing with virtually no resistance. All the tests were run in an undrained 

mode, whereby the normal force is made to vary continuously by the vertical piston so as to 

keep a constant height at all times. Under such conditions of constant volume, measured 

changes in the vertical stress are equivalent to pore pressure (Dyvik et al., 1983). 

 

 

 

Figure D.1 Microphotograph of test sand (oversized shell fragments were removed prior 

to specimen preparation). 
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Sample specimens were prepared by placing slightly moist sand in the reinforced wire 

membrane in small lifts while carefully monitoring density and final height. Once 

assembled into the testing device, the sand was permeated with carbon dioxide and 

saturated with water by inducing an upward flow through the specimen. Two series of tests 

were conducted, one at low density and one at high density. Loose specimens were 

prepared by pluviating sand from a constant height until the desired thickness was achieved 

(on the order of 2.5 cm). Dense specimens required hand tamping and vibration with a 

piston after placement of each lift. The final densities were compared to maximum and 

minimum values determined with a standard vibratory table and container arrangement in 

accordance with ASTM 4253/4254. Maximum density determined in this way was 1.83 

gm/cm3 and minimum density was 1.38gm/cm3. 
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Figure D.2 Grain size distribution of sand tested. 

 

The testing procedure involved applying a normal stress, followed by cyclic shearing at 

constant cyclic stress amplitude on the order of 13 kPa until liquefaction failure was 

observed. A frequency of 0.5 Hz was used in each case. Tests were continued until at least 

15% cyclic shear strain developed. Four specimens were prepared and tested at densities as 

close as possible to the minimum density, and four specimens were prepared and tested 

near the maximum density (Table D-1). It is not expected that any of the normal loads 

resulted in crushing of grains. 
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Table D-1 Testing program 

Test 

No. 

Void 

ratio

Density 

 

(kN/m3)

Relative 

density 

(%) 

Normal 

stress 

(kPa) 

±Shear 

Stress 

(kPa) 

Low density     

LD-1 0.87 14.4 26 97 13.0 

LD-2 0.88 14.3 21 162 13.0 

LD-3 0.97 13.6 3 197 13.0 

LD-4 0.96 13.7 4 274 13.2 

High 

density 

    

HD-1 0.56 17.3 88 97 12.3 

HD-2 0.53 17.6 93 143 13.5 

HD-3 0.59 17.0 81 200 13.5 

HD-4 0.65 16.3 69 264 13.0 

 

 

D.3 Experimental Results 

 

An example of cyclic test results for low-density test LD-3 is shown in Figure D.3. Failure 

is assumed to occur when shear strain first reaches 3%. Although different criteria may 

have been chosen, such as a certain level of strain amplitude, the corresponding onset of 

liquefaction would not be much different. Using the 3% criteria, failure in this test occurs 

after 45 cycles. At this point the pore pressure ratio has increased to 0.83. Pore pressure 

ratio, ru, is herein defined as the ratio of vertical stress required to keep constant volume 

divided by the initial vertical stress. Shear strain accumulates rapidly after 3% strain. The 

test is stopped automatically when prescribed shear strain limits are exceeded. As 

expected, axial normal strain is virtually zero and thus constant volume conditions are 

effectively maintained throughout most of the test. 
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Figure D.3 Low-density test results, LD-3. 
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The permanent strains that are observed as liquefaction develops favor shearing in one 

direction over the other due to a small degree of non-symmetry in the cyclic shear stress 

about the zero-strain reference. Also, limited axial strain develops as liquefaction begins 

near the end of the test due to the equipment’s difficulty in complying with large and rapid 

shear strain changes as the specimen looses stiffness. The loss of shear stiffness can better 

be appreciated in the stress-strain plot shown in Figure D.4. 
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Figure D.4 Shear stress-strain results, LD-3. 

 

Note that large changes in shear stiffness, along with the accumulation of permanent 

deformations, occurs rapidly after liquefaction is initiated. In contrast to the cyclic 

behavior at low density, Figure D.5 and Figure D.6 show the results of test HD-3 at a much 

higher density (Table D-1). The major difference here is that a much larger number of 

cycles is necessary to achieve the liquefaction criteria of 3% shear strain, namely 213 

cycles. 

 

The data from all tests is reproduced in Figure D.7 in conventional contour diagrams 

showing the number of load cycles necessary to cause liquefaction as a function of the 

cyclic stress ratio, which is defined as: 

'
cyc

vo

CSR



  (D-1) 

where cyc is the cyclic shear stress amplitude and ’vo is the normal stress at the start of 

cyclic testing (Table D-1). Again, the onset of liquefaction is assumed to occur at 3% 

cyclic shear strain. Two nearly linear relationships can be considered from the data, one  
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Figure D.5 High-density test results, HD-3. 
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Figure D.6 Shear stress-strain results, HD-3. 

 

for the low-density tests and one for the high-density tests. A single linear trend appears to 

be adequate for relative densities of 26% or less. On the other hand, the data is less 

conclusive for the denser specimens. A linear trend is suggested for relative densities based 

on the 81% and 88% tests, but clearly such a trend does not agree well with the other two 

tests. 

 

Thus it would appear that the precise initial specimen density near the maximum value is 

much more critical in controlling the onset of liquefaction than is the initial specimen 

density near the minimum value. Of course, these observations are preliminary and fail to 

encompass a large range of CSR values. It is well known that for most sands the 

relationship between CSR and number of cycles to failure, at constant density, is nonlinear 

(see for example Kramer, 1996; Finnie et al., 1999). Nonetheless, Figure D.7 shows the 

same general increase in liquefaction resistance with increase in material density than the 

Kramer (1996) and Finnie et al. (1999) studies and countless others. 
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Figure D.7 CSR versus number of cycles to failure (NL) 

 

D.4 Shear Modulus Reduction 

 

Of importance to the modeling of cyclic stress-strain behavior is the degradation of shear 

modulus that occurs as the material softens when it is subjected to repeated cycles of 

loading. This degradation is gradual at low shear strain amplitudes, but accelerates 

dramatically as liquefaction is approached (Seed and Idriss, 1970). Modulus reduction 

curves are typically plotted as a function of number of load cycles or shear strain. Results 

from the high density test HD-3 and the low density test LD-3 are combined in Figure D.8. 

Although both tests appear to begin with somewhat similar values of the shear modulus 

during the first few cycles, this may not necessarily be the case since it is difficult to 

determine the shear modulus accurately at low shear strains. In any case, values soon 

become divergent at higher strains, with the dense specimen indicating larger stiffness at 

equivalent number of cycles, as expected. Results from other studies have indicated an 

inverted ‘S’-shape correlation between shear modulus and shear strain, as opposed to the 

linear trend that is noted in Figure D.9. If the results were to be plotted as a function of 

shear strain instead of number of cycles, this would indeed be the case for our experimental 

data since accumulated shear strains within a single cycle increase progressively with the 
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number of total cycles. Nonetheless, the data in Figure D.8 indicates approximately 60 to 

80% reduction in stiffness at the end of each test. 
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Figure D.8 Shear modulus degradation for high and low density tests 

 

D.5 Cyclic Nonlinear Model 

 

The hysteretic nature of soil is such that shear modulus varies not only from cycle to cycle, 

but also within a single loading iteration (Figure D.9). This makes development of cyclic 

nonlinear models particularly difficult. A variety of such models have been proposed in the 

literature, consisting usually of (a) a backbone curve, and (b) a series of rules governing the 

stress-strain behavior during both the loading and unloading phases within a full load cycle 

(Kramer, 1996). One of the simplest expressions that can be assumed is given by the 

following hyperbolic equation:  

2
2 1

2

r
mn

r

mn r

mn

G

G

 
 

 


 
   

   
 

 (D-2) 

 

where  is shear strain,  is shear stress, r is the reversal shear strain at the top or bottom of 

the load cycle, r is the reversal shear stress at the top or bottom of the load cycle, Gmn is the 

maximum (low-strain) shear modulus for cycle n at the top or bottom of the loop, and mn is 

the estimated shear strength for load cycle n, obtained from extending the hyperbolic 

backbone curve to where it becomes horizontal (Figure D.9). 
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Figure D.9 Model parameters illustrated in conjunction with experimental data for cycle 

N=8, test LD-3. 

 

This model can be used to predict the experimental results, as shown for example in Figure 

D.10 for test LD-3. The predictions in Figure D.10b were made by estimating both loading 

and unloading values of Gmn and mn for each cycle using Equation (D-2). Multiple values 

of Gmn and mn were estimated using several pairs of experimental shear strain and shear 

stress  (Figure D.9), and the results averaged to arrive at single values of Gmn and mn for 

each the loading and unloading phases of every cycle, respectively. Equation (D-2) was 

then used to predict the stress-strain behavior for the entire test, as shown in Figure D.10b. 

 

As expected, the model is able to capture the accumulation of permanent shear strain that 

occurs as the test progresses. The predictions are relatively reasonable during the first 10 

cycles or so, especially with regard to stiffness. However, as the test specimen approaches 

liquefaction, the shape of the hysteretic loops tends to grow in width, which of course is an 

indication that the material undergoes ever more damping. The model is not able to 

properly predict the stress-strain behavior at this stage. More sophisticated models and/or 

more careful loading and unloading paths, other than the simple Masing-type rules implicit 

in Equation (D-2), need to be worked out, 
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Figure D.10 (a) Test results, LD-3; (b) predictions for test LD-3 

 

The model given by Equation (D-2) does not allow for the effects of volume change due to 

shearing that can lead to dilation or contraction under drained conditions, or to pore 

pressure changes when drainage is not allowed. In order to account for pore pressure 

changes that developed during the tests in this study (given the undrained test conditions 

that were imposed), it is necessary to resort to a separate equation. A useful relationship for 

pore pressure ratio ru is the one proposed by Lee and Albaisa (1974) and DeAlba et al. 

(1975), which was developed specifically for stress-controlled cyclic tests: 

1/

11 1
sin 2 1

2u
L

N
r

N





  

    
   

 (D-3) 

Here N is the number of cycles, NL is the number cycles to reach liquefaction, and  is a 

material constant that is a function of soil properties and test conditions. 
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Predictions using this equation are compared to the experimental data for tests LD-3 

(Figure D.11) and HD-3 (Figure D.12). In each case an optimum value of  was sought. 

The correlation is quite good in both cases, which suggests that Equation (D-3) is a 

reasonable means of predicting pore pressure. The parameter  is obviously dependent on 

density. In this case it varies between 0.45 for a loose configuration and 0.75 for a dense 

one. 

 

Figure D.11 Pore pressure ratio data and prediction, test LD-3 

 

 

Figure D.12 Pore pressure data and prediction, test HD-3 
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The nonlinear model represented by Equations (D-2) and (D-3) accounts for some of the 

most important characteristics of granular soil response under cyclic loading. It can easily 

be incorporated into finite element codes for use in geotechnical engineering work. In 

particular, this simple model allows for the development and dissipation of pore pressures 

that are known to occur during and after earthquake shaking. Nonlinear phenomenological 

cyclic models of this type are quite useful for evaluating liquefaction hazards and they 

represent a marked improvement over simpler equivalent linear models. Yet they do not 

include the level of sophistication of more thorough elastoplastic models (which however 

require extensive and often difficult material characterization). Nonetheless, they represent 

a reasonable compromise for limited ranges of soil types and loading conditions (Brandes, 

2002). 

 

D.6 Conclusions 

 

A series of cyclic, constant shear stress amplitude tests were conducted on an offshore sand 

from Florida in order to examine stress-strain behavior at constant volume. Undrained 

conditions are often prevalent in insitu deposits during the period of earthquake shaking. 

Specimens were prepared at low and high densities. As expected, the results indicate a 

strongly nonlinear behavior characterized by stiffness reduction and damping with 

accumulating shear strain. This degradation occurs faster in the low-density specimens. 

 

A nonlinear constitutive model is examined in light of the test results, consisting of a 

hyperbolic stress-strain relationship and an empirical exponential-type expression for 

excess pore pressure. This model does a reasonable job of predicting the shear and pore 

pressure response for the first few cycles, but the shear strain predictions becomes less 

satisfactory as large numbers of load cycles accumulate and liquefaction is approached. 
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Abstract 

Theoretical contexts for each of the stages associated with underwater landsliding can be 

postulated with reasonable confidence, although specific constitutive models require 

additional work. Also still missing is a comprehensive numerical framework for 

predicting displacement fields from small pre-failure and post-depositional sediment 

volume changes and distortions to large-scale inertial sediment wasting. 

 

 

E.1 Introduction 

 

Mass wasting is a common occurrence in virtually every type of ocean margin 

environment, contributing to complex sedimentary sequences well into the deep ocean. 

Although new surveying technologies allow mapping of underwater slides with an 

unprecedented level of detail, our ability to model initiation and post-failure wasting 

process are not yet mature enough to make the type of reliable predictions that are 

required by the oil industry, the military, tsunami modelers, or those dealing with hazard 

assessment. In particular, much remains to be done to understand and properly model the 

post-failure, large-scale deformations that accompany mass wasting in the ocean. 
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The most dramatic form of submarine slope instability involves large-scale slumps and 

slides that can involve the displacement of vast amounts of sediments. Indeed, the largest 

slope failures on earth appear to have occurred on continental margins (Varnes 1958; 

1978). For example, Heezen and Drake (1964) report on a massive slump that 

accompanied the 1929 Grand Banks earthquake, which resulted in multiple telephone 

cable breaks. The affected area spread over 27,000 km2 of upper and lower continental 

slope. There is also evidence of an ever larger failure complex located off South Africa 

(Dingle 1977). Moore (1978) presents an overview of the world-wide evidence for 

large-scale submarine slides and slumps. He finds that the associated mass wasting 

constitutes a significant mechanism for the transport of sediment from the shelf to the 

deep ocean and is important in shaping the continental slope, especially during periods of 

glacially lowered sea level when the sediment load from rivers and streams is deposited 

near the edge of the continental slope. For example, it is estimated that the Atlantic 

margin adjacent to Cape Hatteras shows evidence of Pleistocene mass wasting affecting 

30% to 40% of the slope and rise (Pratson and Laine 1989). 

 

In addition to large-scale failures, there is also ample evidence of smaller sediment 

displacements and distortions that are sometimes almost imperceptible, i.e. barely 

discernible from acoustic records. These include local, minor slumps on steep, otherwise 

stable slopes, intermittent local slumping on gentle slopes, as well as slow, visco-plastic 

distortions that may be precursors of larger slides and slumps (Bjerrum 1967; Skempton 

1964; Terzaghi 1957). An example is shown in Figure E.1, where it is surmised that 

limited deformations along a weak layer, possibly a soft clay or gassy interval, have 

resulted in tensile stresses in the overlying deposit, which in turn has begun to fault at the 

indicated location. It is conceivable that the upper unit may eventually slide with a failure 

plane developing in the weak layer. 

 

Underwater landslides have a number of causes that can be of a geological, 

morphological, physical, or even human nature (Alexander 1992; Cruden and Varnes 

1996; Locat and Lee 2002). However, only one trigger is generally associated with each 

landslide. A trigger is an external stimulus that results in the almost-immediate increase in 
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stresses or reduction in strength, leading to a rapid increase in the rate of downslope 

displacements (Wieczorek 1996). However, not all landslides are associated with a 

well-defined trigger. In some instances failure may be the result of long-term physical or 

chemical processes that lead to a gradual reduction in stability. Possible causes and 

triggers that can lead to underwater landslides are listed in Table E-1. Waves and tides 

only play a role in relatively shallow water. This leaves earthquakes as the only trigger 

mechanism in deep water where cause and effect occur in short order. Given the 

relatively slow pace at which most of the listed processes take place, it is of special 

importance to focus on the role that earthquakes play in underwater landslides, at least in 

seismically prone environments. 

 

 

Figure E.1 Limited distortion of continental slope sediments. 

 

Failure of slope deposits occurs when down-slope shear displacements exceed a certain 

threshold. This is often, but not always, accompanied by a sudden increase in the rate of 

movement of the displacing mass. However, there are no generally accepted criteria for 

the onset of failure in terms of deformation. Instead, a stress-based limit equilibrium 

approach is often used. Although usually satisfactory for engineering purposes, limit 

equilibrium methods neglect the role that deformations play and needlessly separate the 

issue of failure from that of pre- and post-failure deformations and displacements. In 
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order to model the continuum of behavior from a pre-failure state to post-failure 

conditions (including also the possibility of large displacements and changes in material 

constitution), it is necessary to consider the nonlinear mechanics of quasi-static soil, as 

well as the dynamic behavior of accelerated soil and mixed media. In this article we 

review essential aspects of soil behavior in an effort to develop an integrated model with 

a focus on soil deformation and seismic response. 

Table E-2 Underwater landslide causes and triggers. 

Causes/Processes Triggers 

Sedimentation Earthquakes 

Undercutting Waves 

Tectonic steepening Tides 

Volcanic island growth  

Salt diapirism  

Gas expansion/migration  

Glaciation  

Sediment diagenesis  

Fluid seepage  

Hydrocarbon mining  

Other human activities  

 

E.2 Pre-Failure Deformations  

 

The shear and strength behavior of sediments on submarine slopes depends on the type 

and state of the material, as well as on its drainage and volume change characteristics. A 

distinction among soil types is usually made between fine-grained soils of low 

permeability that may also be cohesive, such as clays and some silts, and coarser-grained 

soils of substantially higher permeability that are purely frictional (granular) in nature, 

such as sands, gravels and some silts. Sediments found in the marine environment include 

all of these types, although they tend to decrease in size from the shoreline to the deep 

water (Poulos 1988). 
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The most important attributes of pre-failure soil deformation can be understood with 

reference to Figure E.2. Granular soils that exist in a loose configuration will tend to 

undergo volume reduction upon loading if drainage permits it, or they will develop 

positive pore pressures if fluid is effectively prevented from draining. On the other hand, 

dense granular soils will tend to dilate or develop negative excess pore pressures 

depending upon drainage conditions. In all cases though, experiments indicate that upon 

sufficient straining, soils will achieve a steady-state condition where shearing can 

continue virtually indefinitely under conditions of constant shear stress and constant 

effective confining pressure at constant volume and velocity (Casagrande 1940; Poulos 

1981). At this point any vestiges of soil structure and loading/strain path have been erased 

and the effective confining stress becomes a function of the initial density only (though 

there may be some differences for extensional versus compressional modes of loading). 

Steady state also occurs for clays in drained shear when the ‘residual’ shear strength is 

reached at very large strains. It can also be reached under undrained conditions at large 

shear strain when the strength has dropped to its remolded value. Overconsolidated clays 

behave in a qualitatively similar fashion to dense sands (Figure E.2). 

 

Loose (contractive)

Dense (dilative)

Overconsolidated

no drainage
+ pore pressures

drainage

log '    or    log t f

no drainage

- pore pressures

unstable configuration

Normally
consolidated

flow liquefaction
cyclic loading of granular soils:

drainage

 

Figure E.2 Conceptual soil behavior up to steady-state. 

Loading can be either monotonic or cyclic. In the case of loose granular soils, an unstable 

condition may be reached prior to the steady-state condition if the material is loaded 
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under cyclic conditions, for example due to propagating seismic shear waves resulting 

from an earthquake. The shaking from shear waves is usually fast enough so that 

undrained conditions prevail. If the soil is in a loose condition, it will attempt to densify. 

However, the usual short-term lack of drainage will result in a transitory build up of 

excess pore pressures and a reduction in effective confining stress. If the stress path 

reaches what is known as the flow liquefaction surface (which is represented by a single 

point on the undrained path illustrated in Figure E.2), pore pressure and shear strains will 

accelerate dramatically and strength will be reduced substantially until the steady-state 

conditions is reached. Again, if strength drops below the gravity-driven shear stress 

resulting from the overburden soil, large deformations associated with failure will follow. 

 

Such a liquefaction condition can only be achieved if the granular soil is sufficiently 

loose to begin with, i.e. the soil is initially located to the right of the steady-state line. 

That is not to say that significant deformations cannot be obtained under conditions short 

of liquefaction. Cyclic mobility and ratcheting-type spreading of slope deposits in the 

presence of a biased gravity shear stress can be quite substantial and can cause significant 

damage to rigid structures such as platforms and oil pipelines, regardless of whether the 

soil is initially in a loose or dense state. Seismic loading of cohesive fine-grained soils 

can also lead to substantial pre-failure deformations and loss of strength, but not to 

liquefaction. These pre-failure deformations, which are for the most part irreversible, 

depend on the mode of loading and the character of the material. Given the important role 

that earthquakes are thought to play in triggering underwater landslides in seismically 

active regions of the world, we focus in this section on the cyclic behavior of marine 

sediments. 

 

Prediction of small to moderate deformations during cyclic loading of cohesionless 

sediments is difficult and estimates using existing methodologies can be off by a factor of 

2 or more (Seed et al. 2001). The complexity of predicting small to moderate 

deformations during cyclic loading can be appreciated in Figure E.3, which shows the 

results of undrained cyclic simple shear tests conducted on Monterey #30 sand. Within a 

given cycle, pore pressures are seen to fluctuate in response to repeated softening and 
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stiffening tendencies as shear strain varies. This type of behavior has been well 

documented, but remains problematic to model reliably. At higher densities, the exact 

onset of liquefaction is harder to discern since a relatively abrupt transition in overall 

behavior (as observed in Figure E.3) is usually absent. In the case of slopes, the presence 

of a gravity shear stress in the down-slope direction complicates the behavior even further. 

Figure E.4 shows the results of tests for the same sand, but in this case subjected to a 

preferential shear stress applied in the same direction as the cyclic loading. Not only are 

similar stiffening and softening tendencies observed, but in this case shear strains 

accumulate preferentially in the direction of load application. Slope deposits that are 

shaken in the cross-slope direction may respond in an even more detrimental fashion, for 

example by liquefying sooner when loaded at equivalent intensities and frequencies 

(Boulanger and Seed 1995). However, data is still relatively scarce for this mode of 

loading and reliable models have yet to be developed. Behavior due to multi-directional 

shaking represents an even greater unknown and is difficult to simulate using standard 

laboratory equipment. These shortcomings represent a troubling state of affairs if one 

considers that during an earthquake slopes are likely to be subjected to ground motions in 

more than just the down-slope direction. 

 

Figure E.3 Undrained cyclic behavior of quartz sand, Dr=50%, CSR=0.22, no initial 

driving stress (Seed et al., 2001). 



 143

 

Figure E.4 Undrained cyclic behavior of quartz sand, Dr=50%, CSR=0.22, no initial 

driving stress (Seed et al., 2001). 

 

Three general approaches can be considered for modeling the pre-failure behavior of 

sediments: elasto-plastic coupled analysis using any of a number of constitutive models, 

nonlinear cyclic modeling, and simple empirical prediction. Although advanced 

constitutive models such as the ones described above are based on well-accepted 

theoretical principles and are thus appealing from a conceptual point of view, they are 

often impractical to implement since their description usually involves many material 

parameters, some of which can be difficult to obtain. Nonlinear cyclic models offer the 

benefit of a simpler approach that typically requires fewer material constants. The basic 

features of nonlinear soil behavior can still be captured as long as an effective stress 

approach is used that takes into account progressive degradation of stiffness and strength 

of soil as a result of overall pore pressure accumulation. The numerical procedure also 

must account for simultaneous pore pressure dissipation due to drainage. Finn et al. (1977) 

presented an early model along these lines that has received a fair amount of attention 

over the years. More recently, Liyanathirana and Poulos (2002a; 2002b) modified this 

model somewhat and tested it, with moderate success, for field response during the 1995 

Kobe earthquake and a centrifuge test of a level sand deposit conducted by Abdoun et al. 

(1997). 
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During the initial loading phase, the stress-strain response can be described by: 
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in which  is the shear stress corresponding to a shear strain of ; Gm0 is the initial 

maximum tangent modulus, and m0 is the maximum shear stress the sand can bear 

without failure. As suggested by Finn et al. (1977), Gm0 and m0 can be calculated by 

equations developed by Harding and Drnevich (1972). For horizontal sand layers: 
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where e stands for void ratio (less than 2.0), v’ for vertical effective stress, K0 for 

coefficient of lateral earth pressure at rest, and ’ for effective angle of friction. The 

equations require units of pounds and feet. Maximum shear modulus and maximum shear 

stress vary from cycle to cycle to allow for softening behavior. For the nth cycle: 
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in which vd is the accumulated vertical strain,  v0 is the initial vertical effective stress, 

and H1 through H4 are material constants. If loading reversal occurs at (r, r), subsequent 

loading-unloading cycles can be described by replacing  and  in Equation (E-1) by 

(-r)/2 and (-r)/2, respectively. Also, Gm0 and m0 are replaced by their values during 

the nth cycle, i.e. Gmn and mn. Thus the stress-strain response is given by: 
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As already mentioned, undrained conditions are likely to prevail during earthquake 
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shaking. If the sediment has a tendency to undergo volume reduction, then excess pore 

pressures are generated since drainage is temporarily prevented. The increase in pore 

pressure, assuming an infinite bulk modulus for water, can be described according to the 

model of Martin and Seed (1979): 

r vdu E      (E-7) 

where vd is the incremental vertical strain during the nth cycle. The one-dimensional 

rebound modulus of sand, Er, can be estimated as follows: 
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where C1 through C4, k2, m and n are experimental constants. 

 

Predictions using this model are shown in Figure E.5 and Figure E.6, assuming typical 

material values for a saturated sand (Table E-3). Figure E.5 corresponds to an initial 

loading from /’vo=0 to /’vo=0.058, followed by unloading and reloading between 

/’vo=0.058 and /’vo=-0.058. The effect of an initial shear stress is explored in Figure 

E.6. Here the specimen is loaded monotonically to an initial shear stress of /’vo=0.029 

(=0.01%), and then cycled about that shear stress with an amplitude of /’vo=±0.058. 

 

The model predicts the general hysteretic behavior of sand leading up to liquefaction 

(u/’v0=1.0, Figure E.5). Stiffness reduction is associated with the continuing 

accumulation of pore pressure and loss of effective confining stress. As expected, large 

shear strains follow when liquefaction is approached. However, the model does not 

correctly predict the dual softening-stiffening behavior within each half-cycle that is 

observed at large shear strains in experimental tests such as the one in Figure E.3. This 

type of response is well known (Seed et al. 2001), but no reliable cyclic model is yet 

available to predict it. 

 

Predictions in Figure E.6 for the case of cyclic loading about an initial shear stress 
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(/’vo=0.029) are less satisfactory. Virtually the same stress-strain response is observed 

as in Figure E.5, except that individual curves are shifted upward or sideways. In other 

words, the model is not able to capture the dramatically different experimental response 

of Figure E.4, where substantial re-hardening is observed within one half of each loading 

cycle. Obviously, nonlinear cyclic models need further development before they can be 

applied to accurately predict small pre-failure strains. 

 

 

Figure E.5 Model predictions for case of no bias in cyclic shear stress. 

Table E-3 Material constants for cyclic model. 

Parameter Value Parameter Value 

H1 10 C1 0.8 

H2 2 C2 0.79 

H3 5 C3 0.5 

H4 5 C4 0.73 

k2 0.25 m 0.23 

n 0.36 e 1.0 

’ 25o ’vo 4,500 psf 

vo 0.01%   
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Figure E.6 Model predictions for case of cyclic loading with initial conditions  

/’vo=0.029 and =0.01%. 

 

Although the above description is particularly relevant to coarse sediments with a 

tendency to undergo volume reduction upon cyclic loading, a similar model may also be 

postulated for fine-grained sediments. The major difference is that no significant pore 

pressure develops in these soils and softening/hardening behavior, if any, would have to 

be due to other mechanisms. 

 

Regardless of the soil type, its state, or the loading mode, a critical condition will 

eventually be reached where shear deformations can continue unabatedly if the driving 

shear stress is sufficient. This is likely to correspond closely to the steady-state condition 

discussed earlier and represents the onset of failure. Pre-failure deformations, whether in 

cohesive or granular soils, can result in the significant accumulation of strains, leading to 

sediment displacements that may be of a scale that may be apparent in subbottom 

acoustic records. It is not yet clear though if these types of pre-failure soil distortions are 

responsible for the acoustically transparent intervals that are observed in some subbottom 

slope records, as for example in Figure E.1. 
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E.3 Failure Mechanics 

 

Failure is usually associated with the onset of very large shear displacements that in 

slopes can lead to slides, slumps, and flows. Due to the difficulty in predicting pre-failure 

strains and establishing failure criteria based on these deformations, a much simpler 

approach based on stress limit equilibrium concepts is typically used instead. However, a 

more precise failure condition can be postulated based on soil sediment reaching the 

steady state condition and destabilizing stresses exceeding the steady-state strength. If 

both conditions are reached, and if at least one failure surface can be mobilized through 

the soil deposit, then the failed sediment mass can move along such a surface in the 

downslope direction until equilibrium is reestablished. Deformations prior to such a state 

would be modeled using conventional soil elasto-visco-plasticity, perhaps along the lines 

of what is discussed in the previous section. Deformations beyond failure would be 

modeled according to viscous and mixed fluid-grain concepts, as is outlined in the next 

section. 

 

The steady-state condition could be reached by loading due to processes other than 

liquefaction under undrained conditions (Figure E.2). For example, sediment deposition 

that results in steepening of a slope would produce volume reduction due to consolidation 

of the sediment, but would also increase the driving stress. The general stress path for 

contractive sediment would be to the right and downward of the initial condition depicted 

in Figure E.2. Similarly, gas expansion at depth is likely to take place under undrained 

conditions, with a corresponding increase in excess pore water pressure and decrease in 

strength (i.e. it would follow an undrained path in Figure E.2). Tides over a fine-grained 

seabed may lock in excess pore pressures and lead to failure due to a reduction in strength 

along an undrained path, much the same way as the sudden drawdown of a reservoir can 

lead to failure of the upstream embankment if pore water is not allowed to dissipate 

quickly enough. 
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E.4 Modeling of Post-Failure Displacements 

 

Once a steady state condition is reached and driving stresses exceed the steady state 

strength, soil above the mobilized failure surface begins to move downslope with inertia 

playing a crucial role. In addition, sediment that displaces at a substantial velocity may 

interact with the surrounding water and change its state by exchanging mass and 

momentum with the surrounding water and the seabed.  
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Figure E.7 Bulk energy considerations during landsliding. 

 

The range of sliding processes from the pre-failure state to the final condition, when the 

wasted mass comes to a rest and reestablishes static equilibrium, is best viewed with 

respect to energy principles (Figure E.7). Sediment mobilization that occurs as failure is 

triggered involves a transformation of gravitational potential energy into kinetic energy. 

As sediment attains significant speed it may break up and become agitated. Thus a 

portion of the translational energy is converted into random internal vibration energy and 

fluid pressure. The rate of interchange (back and forth) can vary as the sliding proceeds. 
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Eventually though all energy is wasted and the sediment mass comes to a halt. A variety 

of approaches can be used to model the kinematics of post-failure displacements: 

viscoplastic modeling, grain flow theory, dimensional analysis, continuum mixture theory 

(steady and unsteady), and hydraulic modeling (Iverson 1997; Iverson et al. 1997). Of 

these, continuum mixture theory and hydraulic modeling are the most promising ones. 

 

Momentum transport for grain-fluid mixtures involves the following important processes: 

inertial grain collisions, grain contact friction, viscous shear, inertial (turbulent) fluid 

velocity fluctuations and solid-fluid interactions. The amount of sediment disassociation 

that occurs as flow attains significant momentum can be characterized using the concept 

of granular temperature: 

 22ns s sT   v v v        (E-10) 

This quantity arises from conversion of translational energy as grains shear along 

irregular surfaces. It leads to sediment dilation, dispersion, and reduced density and flow 

mobility. General conservation laws can be postulated for mixtures of solids and fluid 

fractions as follows. 

Mass conservation: 
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Momentum conservation: 
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where the subscripts s and f indicate solid and fluid components,  stands for density,  

for solid or fluid fraction, v for velocity, m for mass, t for time, f for interaction force and 

T for stress. 

 

The appeal of these equations is that they can be applied, through suitable approximations, 

to quasi-static motion as well (i.e. conventional soil mechanics), both prior to failure and 
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after final deposition. It is therefore conceivable to model the entire spectrum of 

landsliding from pre-failure to post-failure states with a consistent model that predicts 

deformations at all levels of distortion. Of course, a suitable numerical framework needs 

to be developed. It is likely that different numerical techniques will apply to the various 

kinematic regimes in Figure E.7 (for example, finite element, finite difference, boundary 

element, Lagrangian cell methods, etc.). 

 

Hydraulic modeling constitutes the state-of-the-art method for modeling fast-moving 

sediment-fluid flows (debris flows). It uses depth-averaged equations of motion and 

therefore treats solid-solid and solid-fluid interactions in only a rudimentary way. 

However, it is able to account for experimentally observed surges (unsteady and 

non-uniform) with sediment concentrations that are non-homogenous. 

 

E.5 Final Comments 

 

It is often not sufficient to consider underwater landslide failures only from a 

loading/resistance point of view and thereby neglect sediment mobility altogether. There 

are many instances when prediction of attendant sediment deformations is essential. For 

example, the link between underwater landslides and potential tsunamis in current 

hydrodynamic codes is hampered by a lack of realistic models that describe the shape and 

initial mobilization of destabilized slope sections. Also, an increasing number of 

structures, such as oil platforms and drilling equipment, are being placed in vulnerable 

environments and their performance can be seriously jeopardized by even small or 

moderate sediment displacements. 

 

Fortunately, a considerable amount of knowledge has been acquired with regard to the 

conditions necessary to cause underwater landslides and the mechanics of various mass 

wasting processes. Although this understanding is by no means complete, it is now 

possible to develop comprehensive numerical models that can provide estimates of the 

displacement field resulting from particular processes that affect the stability of 

underwater slopes. 



 152

E.6 References 

 

Abdoun, T., R. Dobry, et al. (1997). Centrifuge and numerical modelling of soil-pile 
interaction during earthquake induced soil liquefaction and lateral spreading. 
Geo-Logan '97. Logan, Utah: 76-90. 

Alexander, D. (1992). "On the causes of landslides: human activities, perception, and 
natural processes." Environmental Geology and Water Sciences 20(3): 165-179. 

Bjerrum, L. (1967). "The third Terzaghi lecture: progressive failure in slopes of 
overconsolidated plastic clay and clay shales." Journal of the Soil Mechanics and 
Foundations Division, ASCE 93: 1-49. 

Boulanger, R. W. and R. B. Seed (1995). "Liquefaction of sand under bidirectional 
monotonic and cyclic loading." Journal of Geotechnical Engineering, ASCE 
121(12): 870-878. 

Casagrande, A. (1940). "Characteristics of cohesionless soils affecting the stability of 
slopes and earth fills." Contributions to Soil Mechanics: 257-276. 

Cruden, D. M. and D. J. Varnes (1996). Chapter 3: landslide types and processes. 
Landslides: Investigation and Mitigation, Special Report 247. A. K. Turner and R. 
L. Schuster. Washington, DC, National Academy Press: 36-75. 

Dingle, R. V. (1977). "The anatomy of a large submarine slump on a sheared continental 
margin (S.E. Africa)." Journal of the Geological Society 134: 293-310. 

Finn, W. D. L., K. W. Lee, et al. (1977). "An effective stress model for liquefaction." 
Journal of the Geotechnical Engineering Division, ASCE 103(6): 517-533. 

Hardin, B. O. and V. P. Drnevich (1972). "Shear modulus and damping in soils; 
measurement and parameter effects." Journal of the Soil Mechanics and 
Foundations Division, ASCE 98(SM6): 603-624. 

Heezen, G. R. and C. L. Drake (1964). "Grand Banks slump." American Association of 
Petroleum Geologists Bulletin 48: 221-225. 

Iverson, R. M. (1997). "The physics of debris flows." Reviews of Geophysics 35(3): 
245-296. 

Iverson, R. M., M. E. Reid, et al. (1997). "Debris-flow mobilization from landslides." 
Annual Review of Earth and Planetary Science 25: 85-138. 

Liyanapathirana, D. S. and H. G. Poulos (2002a). "A numerical model for dynamic soil 
liquefaction analysis." Soil Dynamics and Earthquake Engineering 22: 
1007-1015. 



 153

Liyanapathirana, D. S. and H. G. Poulos (2002b). "Numerical simulation of soil 
liquefaction due to earthquake loading." Soil Dynamics and Earthquake 
Engineering 22: 511-523. 

Locat, J. and H. J. Lee (2002). "Submarine landslides: advances and challenges." 
Canadian Geotechnical Journal 39: 193-212. 

Martin, G. R. and H. B. Seed (1979). "Simplified procedure for effective stress analysis of 
ground response." Journal of the Geotechnical Engineering Division, ASCE 
105(GT6): 739-758. 

Moore, D. G. (1978). Submarine slides." Developments in Geotechnical Engineering. 
Rockslides and Avalanches, 1 Natural Phenomena. B. Voight. New York, Elsevier 
Scientific Publishing. 14A: 564-604. 

Poulos, H. G. (1988). Marine Geotechnics. London, Unwin Hyman. 

Poulos, S. J. (1981). "The steady state of deformation." Journal of the Geotechnical 
Engineering Division, ASCE 107(GT5): 553-562. 

Pratson, L. F. and E. P. Laine (1989). "The relative importance of gravity-induced versus 
current-controlled sedimentation during the Quaternary along the mideast U.S. 
outer continental margin revealed by 3.5 kHz echo character." Marine Geology 89: 
87-126. 

Seed, R. B., K. O. Cetin, et al. (2001). Recent advances in soil liquefaction engineering 
and seismic site response evaluation. Proceedings, Fourth International 
Conference on Recent Advances in Geotechnical earthquake Engineering and Soil 
Dynamics,. Rolla, University of Missouri. 

Skempton, A. W. (1964). "Long-term stability of clay slopes." Geotechnique 14(2): 
77-101. 

Terzaghi, K. T. (1957). "Varieties of submarine slope failures." 25. 

Varnes, D. J. (1958). Landslide types and processes. Special Report 29: Landslides and 
Engineering Practice. E. B. Eckel. Washington, DC, HRB, National Research 
Council: 20-47. 

Varnes, D. J. (1978). Slope movement types and processes. Special Report 176: 
Landslides: Analysis and Control. R. L. Schuster and R. J. Krizek. Washington, 
DC, TRB, National Research Council: 11-33. 

Wieczorek, G. F. (1996). Chapter 4: landslide triggering mechanisms. Landslides: 
Investigation and Mitigation, Special Report 247. A. K. Turner and R. L. Schuster. 
Washington, DC, National Academy Press: 76-90. 

 
 



 154

Appendix F 

 

 

Seismic Refraction and MASW Surveys for 

Investigation of Subsurface Conditions at Kealakaha 

Stream Replacement Bridge 

Geophysical Investigation by Advanced Geoscience, Inc. 



 
 
 
 
 
 
 

 
 
 
 
 

 
 
         

`   
October 30, 2007   

 
University of Hawaii at Manoa 
College of Engineering 
2540 Dole Street 
Holmes Hall 240 
Honolulu, Hawaii 96822-2382 
 
Attention: Dr. Horst G. Brandes 
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At Kealakaha Stream Replacement Bridge 

  Island of Hawaii, Hawaii 
 

INTRODUCTION 
 
This report summarizes the results of the seismic refraction and multi-channel analysis of 
surface waves (MASW) surveys completed at the referenced site on June 2 and 3, 2007.  
These surveys were used to prepare subsurface profiles of the seismic compressional- 
wave and shear-wave velocity layering near the proposed bridge abutments.  We 
understand this information will be used by the University of Hawaii to generate a 
seismic shear-wave velocity profile along the bridge alignment for computer modeling of 
earthquake vibration patterns.  
 
The seismic refraction and MASW surveys were recorded along three survey lines, 
designated as Lines SL-1, SL-2, and SL-3.  These survey lines were positioned at the 
locations shown on the site map in Figure 1.   The refraction data recorded along these 
lines underwent computer processing using tomographic modeling to prepare two-
dimensional, subsurface profiles of compressional-wave velocity variations.  The MASW 
data were used to generate separate shear-wave velocity profiles based on modeling of 
the measured Rayleigh wave (ground roll) phase velocity versus frequency variations.  
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The site map in Figure 1 shows the starting and ending points of Lines SL-1, SL-2, and 
SL-3 in relation to the proposed bridge abutments.  This map was prepared from the field 
mapping of the survey line locations provided to us by the University of Hawaii.  
 
The following sections summarize our data collection and processing procedures.  A 
concluding section discuses our interpretation of the seismic velocity layering shown on 
these profiles and our recommendations for preparing a shear-wave velocity profile along 
the bridge alignment. 
 

SURVEY PROCEDURES 
 
Data Collection 
 
The survey lines were positioned along relatively straight-line traverses across accessible 
areas where the ground surface was essentially flat or evenly sloping (Figure 1).  Lines 
SL-1 and SL-2 were positioned on two traverses setup along the highway on each side of 
the existing bridge.  A total of 95 meters (312 feet) of geophone coverage was setup 
along each of these lines.  Line SL-3 was positioned along a shorter, northerly traverse 
setup in a graded area on the west bank of the stream channel.  The total geophone 
coverage setup along this line was 42 meters (138 feet). 
 
The seismic data were recorded using a Seistronix 48-channel seismic acquisition system 
with 24-bit analog to digital resolution.  This system was connected to linear arrays (or 
spreads) of geophones spaced 1-meter apart along each line.  Lines SL-1 and SL-2 were 
setup with three overlapping 48-channel geophone arrays, referred to as Spreads 1, 2, and 
3.  Line SL-3 was setup with one 43-channel geophone array referred to as Spread 1.   
 
The geophones setup along these spreads consisted of single 4.5-Hertz vertical geophones 
commonly used for refraction and MASW surveys.  The geophones were planted into the 
ground on their attached metal spikes.    
 
The refraction data for Lines SL-1 and SL-2 were recorded separately into Spreads 1 and 
3.   Seismic waves were generated at several overlapping “shot points” positioned along  
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each line and recorded into all 48-geophone channels.   A pattern of ten shot points was 
recorded for Line SL-1, and fifteen shot points was recorded for Line SL-2.  The first and 
last shot points were positioned 0.5 meters off the ends of the first and last geophone 
positions.  The remaining shot points were positioned between the geophones at mostly 
7-meter intervals.   
 
For the shorter-length Line SL-3, the refraction data were recorded into Spread 1 with 43 
geophone channels.  A pattern of seven shot points was recorded for this line.  These shot 
points were also spaced at 7-meter intervals. 
 
A 12-pound sledge hammer was used at each shot point to generate seismic waves for 
both the refraction and MASW data recording.  The sledge hammer was used to make 
multiple impacts on a metal plate placed on the ground surface.  The field records from 
four to as many as ten impacts were summed together to increase the signal-to-noise ratio 
and overcome background noise vibrations.   
 
The sledge hammer-source MASW data were recorded during a one-second time interval 
for Lines SL-1, SL-2, and SL-3 using an “end-on” recording configuration.  The shot 
points were positioned off the end of an array of 24 active geophone channels moved 
along the line at 2-meters intervals.  The constant offset from the shot point to the closest 
active geophone was 5 meters.  The shot points started 5 meters off the first geophone 
position and moved down the line at 2-meter intervals.  The first and last shot point 
positions for Lines SL-1, SL-2, and SL-3 and their corresponding first and last active 
geophone positions are summarized below. 
 

Line SL-1 
  First shot point: -2 m  Active geophone positions: 3 m to 26 m 
  Last shot point: 68 m  Active geophone positions: 73 m to 96 m 
 

Line SL-2 
  First shot point: -5 m  Active geophone positions: 0 m to 23 m 
  Last shot point: 65 m  Active geophone positions: 70 m to 93 m 
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Line SL-3 
  First shot point: -5 m  Active geophone positions: 0 m to 23 m 
  Last shot point: 15 m  Active geophone positions: 20 m to 43 m 
   
Passive-source MASW data were also recorded along Lines SL-1 and SL-2 for the 
evaluation of deeper shear-wave velocity layering.  The 48-channel geophone arrays 
setup along these lines were used to record ground roll vibrations during a 30-second 
time interval from distant vehicles heading away from one end of the line.  The first and 
last active geophone positions used to record the passive-source MASW records are listed 
below. 
 
 Line SL-1 
  Spread 1 Active geophone positions: 3 m to 50 m 
  Spread 3 Active geophone positions: 51 m to 98 m 
 
 Line SL-2 
  Spread 1 Active geophone positions: 0 m to 47 m 
  Spread 2 Active geophone positions: 24 m to 71 m 
  Spread 3 Active geophone positions: 48 m to 95 m    
 
Seismic Data Processing and Modeling 
 
The 48-channel seismic refraction field records were used to pick first arrival times for 
seismic waves traveling through the surface layer and into deeper higher-velocity layers.  
These first arrival times were used to generate a series of travel time curves from each 
shot point along Lines SL-1, SL-2, and SL-3.  Archived copies of these field records and 
time curves are available in our project files. 
 
The first arrival time data were input together with geophone stationing and elevations 
into the computer program RAYFRACT (written by Intelligent Resources, Inc.) to 
generate an estimated velocity-depth model for Lines SL-1, SL-2, and SL-3.  
RAYFRACT used the first arrival time picks to conduct refraction tomography imaging 
of the seismic velocity layering.  An initial velocity-depth model was first estimated 
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using a one-dimensional, smoothed velocity gradient averaged across the line from all the 
travel time curves.  This initial smoothed model was then refined to produce a closer fit 
to the first arrival time data using the Wavepath Eikonal Traveltime (WET) tomographic 
inversion method with 200 iterations.  This best-fit velocity-depth model was then 
gridded and contoured with SURFER (written by Golden Software, Inc.) to show 
estimated lateral and vertical variations.  The resulting compressional-wave velocity 
profiles for Lines SL-1, SL-2, and SL-3 are shown in Figures 2, 3, and 4.  For comparison 
each of these profiles is displayed with a 500 ft/sec contour interval and the same color 
velocity scale ranging from 500 to 15,000 ft/sec.   
 
The compressional-wave velocity profile for Line 1 shows an area of “lower wave path 
coverage” on the first half of the line with missing deeper velocity coverage.  This is the 
result of the limited longer-offset travel time coverage through this area caused by poor 
penetration of the sledge hammer’s seismic energy at certain shot points.   The velocity 
profiles for Lines 2 and 3 do not show significant areas of limited coverage in the centers 
of these lines.        
 
The MASW data were processed using the latest version of the computer program 
Surfseis developed by the Kansas Geological Survey.  The digital SEG2 format field 
records from Lines SL-1, SL-2. and SL-3 were input into the program to perform a 
specialized sequence of processing to prepare dispersion curves showing ground roll 
phase velocity versus frequency.    
 
The sledge hammer-source, MASW data were processed first.  Dispersion curves were 
generated for each 24-channel field record.  These curves were used to calculate 1-D 
models of shear-wave velocity layering for the center of each 24-channel geophone 
spread.  The resulting 1-D models were generated along each line at 2-meter intervals and 
computer gridded and contoured to prepare several estimated shear-wave velocity 
profiles using different modeling parameters.  These profiles were compared to the 
compressional-wave velocity profiles in Figures 2, 3, and 4. Based on this comparison we 
selected a final set of modeling parameters that generated the most consistent shear-wave 
velocity profiles along Lines SL-1, SL-2, and SL-3.  These shear-wave velocity profiles 
primarily show velocity layering within 50 feet from the ground surface. 
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The passive-source MASW data from Lines SL-1 and SL-2 were used to extend the depth 
of shear-wave velocity imaging beneath these lines.  The longer, 48-channel records were 
used to generate dispersion curves from lower-frequency, deeper penetrating ground roll.  
These curves were used to calculate additional 1-D models for the centers of the five 48-
channel geophone spreads (Spreads 1 through 3). The resulting 1-D models were added 
to the 1-D models from the sledge hammer-source MASW data and computer gridded 
and contoured to prepare deeper shear-wave velocity profiles. 
 
The shear-wave velocity profiles for Lines SL-1 and SL-2 from the combined sledge 
hammer and passive-source MASW data are shown in Figures 5 and 6.  The velocity 
profile for Line SL-3 from the sledge hammer-source MASW data is shown in Figure 7.  
For comparison each of the profiles is displayed using a contour interval of 100 ft/sec and 
the same color velocity scale ranging from 200 to 2,500 ft/sec. 
 
The compressional-wave and shear-wave velocity profiles for Lines SL-1, SL-2, and SL-
3 (Figures 2 through 7) all show estimated velocity variations with respect to the ground 
surface elevations estimated from the field mapping. 
 
More information on RAYFRACT refraction tomography and Surseis MASW modeling 
is available at www.rayfract.com and www.kgs.ku.edu/software/surfseis. 
        

DISCUSSION OF RESULTS 
 
Interpretation of Seismic Velocity Layering 
 
The compressional-wave velocity profiles for Lines SL-1, SL-2, and SL-3 (Figures 2 
through 4) all show similar patterns of velocity layering, indicating an upper, 
unconsolidated, soil/saprolite layer overlying a transitional, weathered basalt bedrock that 
quickly increases in velocity with depth.  The compressional-wave velocities associated 
with the upper surface of the “basalt formation” are variable and appear to range mostly 
from 3,500 to 4,500 ft/sec.  Below this 3,500 to 4,500 ft/sec layering, the velocity 
contours on these profiles show rapidly increasing velocity with depth, indicating 
increasingly harder, less weathered basalt.  The 3,500 to 4,500 ft/sec velocity range and  

 
 

http://www.rayfract.com/
http://www.kgs.ku.edu/software/surfseis


 
 
 
 
 
 
 

 
 
 
 
 

University of Hawaii at Manoa 
College of Engineering 
October 30, 2007 
Page 7 
 
its general elevation profile are also consistent with the logs from boreholes B-2, B-4, B-
10 and B-11 which are near Lines SL-1 and SL-2.  These logs describe this upper basalt 
formation as varying from moderately to highly weathered, fractured, vesicular, and 
scoriaceous, with soil inclusions.   The elevations for the upper basalt formation on these 
logs are also somewhat consistent with the elevations of the 3,500 to 4,500 feet/sec 
velocity layering shown on the profiles.  However, near the start of Line SL-2 the basalt 
surface appears to be slightly lower than the elevations it was encountered in boreholes 
B-10 and B-11. 
 
Borehole B-103 was drilled on Line SL-2; however, the total depth of this boring 14.5 
feet did not extend to the basalt formation.  At this depth the boring encountered saprolite 
where the compressional-wave velocity profile for Line SL-2 shows 2,000 ft/sec.   
   
The shear-wave velocity profiles for Lines SL-1 and SL-2 (Figures 5 and 6) show 
velocities that are consistent with the compressional-wave velocity profiles (Figures 2 
and 3).  The upper surface of the basalt formation again appears to be variable with shear-
wave velocity ranging from 1,700 to 2,200 ft/sec.  The shear-wave to compressional-
wave velocity ratios (Vs/Vp) above and below this horizon are consistent with our 
expectation of these ratios for the upper unconsolidated, soil/saprolite layer and 
competent basalt bedrock layer.  Generally, Vs/Vp ratios for soils and unconsolidated 
materials are near 0.4 and Vs/Vp ratios for competent rock are near 0.6 (reference: 
Exploration Geophysics of the Shallow Subsurface, H. R. Burger, 1992).  These ratios 
were calculated at various points on the profiles for Lines SL-1 and SL-2 and were within 
the range of these values. 
 
The deeper part of the shear-wave velocity profile for Line SL-3 (Figure 7) does not 
show velocities consistent with the above expectations of Vs/Vp ratios.  Below elevation 
820 feet, the shear-wave velocities appear to be low estimates when compared to the 
compressional-wave velocities in Figure 4.  These lower velocities are probably caused 
by the MASW modeling’s inability to account for a steeply-sloping basalt “half space” in 
this area.  The topography indicates the upper surface of the basalt slopes very steeply 
toward the stream channel perpendicular to the orientation of Line SL-3.            
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Recommendations for Shear-Wave Velocity Profile 
 
We recommend the following considerations be given for preparing an extrapolated 
shear-wave velocity profile along the alignment of the bridge. 
 

1. The shear-wave velocity profiles for Lines SL-1 and SL-2 (Figures 5 and 6) 
provide more accurate estimates of the actual shear-wave velocity variations.  
Within the upper 50 feet of the ground surface these velocities are probably 
accurate within ±10 percent.  From 50 to 90 feet below the ground surface the 
velocities shown on these profiles are probably slightly less accurate.  However, 
the profile for Line SL-3 below elevation 820 feet provides a lower estimate of 
these velocities.  We recommend that the deeper part of this profile not be used.   

 
2. The smaller scale shear-wave velocity variations on the profiles for Lines SL-1 

and SL-2 are probably not accurately represented.  We recommend that lateral 
velocity variations less than 40 feet in length on these profiles not be used. 

 
3. The deeper part of the compressional-wave velocity profiles (Figures 2, 3, and 4) 

show higher velocities in excess of 12,000 ft/sec.  Because of the positioning of 
these velocity layers near the bottom limit of the model these higher velocities are 
probably not realistic.  We recommend that 12,000 ft/sec be used as the highest 
compressional-wave velocity layer on these profiles. 

 
4. Shear-wave velocity estimates for the deeper, harder basalt layers shown on the 

compressional-wave profiles can be calculated using the Vs/Vp ratio of 0.6 for 
competent rock.  Using this ratio, the compressional wave velocity profiles show 
that 7,200 ft/sec should be used as the deepest half space, shear-wave velocity 
layer.  Beneath the center of Line SL-2 the elevation of this 7,200 ft/sec layer is 
about 720 feet.  Beneath the southeast end of Line SL-1 the elevation of this 7,200 
ft/sec layer rises to about 870 feet.  These elevation variations should also be 
considered when preparing the deeper part of this shear-wave velocity profile.         
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We hope this report provides sufficient information on the results of these surveys.  
Please feel free to call us for further discussion. 
 
We appreciate the opportunity to be of service to the University of Hawaii. 
 
 
 
 
 
 
 
 
 
 
 
 
Sincerely, 
 
Advanced Geoscience, Inc. 
 
 
 
 
 
 
Mark G. Olson    CA-Licensed Professional Geophysicist No. GP980 
Principal Geophysicist and Geologist  CA-Licensed Professional Geologist No. 6239 
 
 
 
 
Attachments:  Figures 1 through 7 
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*Note: Shear-Wave Velocity Model Below Elev. 820 Feet Appears
 to Represent a Low Estimate of the Actual Shear-Wave
 Velocity Profile in this Area.
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Soil and Rock Properties in a Young Volcanic
Deposit on the Island of Hawaii

H. H. Brandes, F.ASCE1; I. N. Robertson, M.ASCE2; and G. P. Johnson, M.ASCE3

Abstract: Deeply weathered lava flows of oceanic basalt reflect the mode and sequence of volcanic deposition, parent mineralogy, and
postdepositional erosional and weathering processes. In turn, these are controlled by geology, geography, and climate. One particular site on
the Island of Hawaii has been the focus of study to gain a better understanding of complex residual soil deposits, particularly in connection
with a need to characterize seismic strong-motion propagation through decomposed surface soil and rock sequences. Materials at the site
range from fully weathered volcanic soils, sometimes with unusual mineralogy and plasticity properties, to saprolite, weathered rock, vesicu-
lar basalt, and hard rock. Seismic surveys were conducted to investigate the distribution of these materials at the study site. Laboratory tests
focused on saprolite and vesicular rock as two materials that are seldom reported on and that remain poorly characterized, at least with regard
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Introduction

The Island of Hawaii rises as a massive volcanic edifice from the
North Pacific Ocean floor, some 3,000 km from the nearest con-
tinent. Hawaiian intraplate volcanism takes place through a thin
oceanic crust made up largely of basaltic rock. In contrast, con-
tinental volcanism usually involves light granitic rock and a thicker
lithosphere. The Big Island is geologically very young, with the
oldest exposed rocks no more than approximately a million years
old. Because of tropical conditions, volcanic lavas undergo perva-
sive chemical weathering upon exposure to the elements, with the
rate and nature of breakdown very dependent on localized micro-
climate and drainage patterns. As a result, there exist a great variety
of soil and rock types throughout the island, and in many respects
they are different from those that exist in continental environments.

And yet Hawaiian rock and soil remain, for the most part, rather
poorly characterized and understood. This represents a particularly
challenging problem for earthquake engineering practice. The
Island of Hawaii is seismically very active, as we were reminded
by the M6.7 Kiholo Bay earthquake of 2006 (Robertson et al.
2006). Given the pace of rapid development in certain areas, there
is an urgent need for a better understanding of strong-motion wave
propagation through upper soil and rock layers. Very often such
deposits consist of residual volcanic soil, saprolite, and weathered
rock. However, it is not clear how such materials may respond to
seismic shaking. For example, there is some evidence to suggest
that certain surface wet-ash soil deposits may amplify seismic

waves quite a bit relative to stiffer soils and rock (Wieczorek et al.
1982). This article presents sorely lacking experimental data re-
garding velocity, stiffness, strength, and other properties of residual
soils and basaltic rock for a deeply weathered lava-flow site on the
lower slope of Mauna Kea.

The general lack of understanding regarding the seismic re-
sponse of deeply weathered lava flows posed a challenge during
the recent design and performance analysis of a replacement for
the Kealakaha Bridge, which is located on Route 19 in the Hama-
kua District of Hawaii (Fig. 1). This bridge, along with several
others located north of Hilo, has been targeted for replacement
because it was deemed to be seismically inadequate. To deve-
lop a better understanding of seismic soil-structure interaction
for tropical basaltic environments, the Hawaii Department of Trans-
portation decided to carry out a companion study on site charac-
terization, seismic instrumentation, and modeling in connection
with replacement of the old Kealakaha Bridge.

The new Kealakaha Bridge consists of a three-span, postten-
sioned superstructure spanning 220 m over two abutments and
two intermediate piers. The center span is 110 m long, whereas
each abutment span is 55 m long. The bridge superstructure is com-
posed of cast-in-place, multicell, tapered box-girder sections can-
tilevering on either side of the two intermediate piers, with drop-in
precast I-girders to complete the middle span and abutment spans.
Continuity posttensioning connects all drop-in girders and box-
girder sections to create a continuous superstructure. To reduce
the seismic demand on the bridge foundations, the contractor
elected to redesign the bridge by using seismic base isolators.
Two inverted-pendulum, friction-type base isolators were installed
at each abutment and at the top of each pier to support the super-
structure. This is the first application of base isolation in the State of
Hawaii. To monitor the bridge performance during future seismic
events, the Hawaii Department of Transportation has funded the
installation of an extensive instrumentation system. Accelerometers
will be located throughout the bridge super- and substructure, in-
cluding downhole field accelerometers on either side of the stream
gulch. Displacement transducers will be installed to monitor move-
ment at the base isolators.
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This paper presents results from field and laboratory testing to
describe the general stratigraphy at the Kealakaha Bridge site.
Wave measurements from geophysical surveys in the field and from
laboratory tests provide seismic characterization of volcanic soil
and weathered rock that is seldom found in the literature. In par-
ticular, a series of strength and velocity measurements on relatively
unweathered vesicular basalt provide insight into the behavior of
this type of material.

Geology

The base of the oceanic crust beneath Hawaii is 15 to 19 km below
sea level. Magma seen erupting from active volcanoes comes from

the melting of solid rock near the outer edge of the Earth’s mantle.
By the time magma reaches the surface, it has been altered signifi-
cantly from the parent peridotite that makes up the mantle. To be
more precise, the source of magma in the upper mantle directly
beneath Hawaii is a rock called lherzolite, a variant of the more
common peridotite, both of which are rich in pyroxene and olivine.
Important mineralogical changes occur as the mantle rock first
melts, ascends to the surface, and then cools. By the time magma
reaches the surface, it is typically richer in silicon and poorer in iron
and magnesium than peridotite. Gases that enter the magma at great
depths, chiefly water vapor and carbon dioxide, are released as it
nears the surface, leaving behind small bubbles or cavities referred
to as vesicles (Hazlett and Hyndman 1996; Macdonald et al. 1983;

Fig. 1. Kealakaha Bridge, Island of Hawaii: (a) location of Kealakaha Bridge on Hawaii Belt Road northwest of Hilo (elevations in meters above
mean sea level); (b) old bridge crossing and construction of pier for new bridge over Kealakaha Gulch (Hilo side) (image courtesy of the authors)
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Kennett 1982). These vesicles, or macropores, can have an impor-
tant effect on wave propagation and mechanical properties, as our
testing indicated.

As magma turns into lava upon eruption, it cools fairly quickly,
leaving behind a relatively homogenous gray to black fine-grained
rock commonly referred to as basalt. The matrix is composed al-
most entirely of calcium-rich plagioclase feldspar and pyroxene,
although other minerals, such as olivine, may be present in smaller
quantities. Embedded within the fine-grained matrix are sometimes
larger crystals of olivine, plagioclase feldspar, or pyroxene, which
are often visible with the naked eye. These crystals form in shallow
magma chambers or similar formations where the ascending
magma pauses for a time and the rate of cooling is reduced, al-
lowing the formation of the larger crystals.

Two major types of basaltic rock are generally recognized in
Hawaii. Tholeiitic basalt, which is relatively rich in silica and poor
in sodium and potassium, and alkalic basalt, comparatively poor in
silica but rich in the alkalies sodium and potassium. Other types of
igneous rocks, such as trachyte and nephelinite, are occasionally
encountered as well, but they are far less common. The large shield
volcanoes responsible for the major growth of the islands produce
theoliitic basalt during most of their lives, but shift to alkalic basalt
as they begin to decline. Rejuvenated volcanic activity tends to pro-
duce alkalic and other basalt types, but rarely theoliitic basalt. The
reason for the change from theoliite to alkalic lava is not clear
(Macdonald et al. 1983). In any case, there is no evidence that
weathering products derived from theoliitic or alkalic basalt are sig-
nificantly different from one another in terms of geotechnical prop-
erties, although admittedly there have been no definitive studies
on this.

Perhaps the greatest difference between Hawaiian and
continental igneous rock is the absence of granite and the lack
of other quartz-rich rocks in Hawaii, which are among the most
common types of igneous rock found on continents. Therefore,
it may be conjectured that soils formed from Hawaiian basalt
may not always behave the same way as soils that derive from
continental igneous rocks.

Further differences between volcanism in Hawaii and volcanism
at the edge of continents, which play a role in the development of
soils, have to do with the type of eruptions that are most commonly
observed. During most of their active lives, Hawaiian shield vol-
canoes tend to erupt large quantities of very hot and fluid lavas that
can travel large distances before coming to a halt. This is in contrast
to more violent eruptions that take place for volcanoes at the edge
of tectonic plates. Thus, rather than extensive pyroclastic deposits,
the bulk of the Hawaiian islands consist of layer upon layer of lava
flows, usually no more than 10 m thick, forming massive shields
that slope gently from crater to ocean. One important implication
here is that many deeply weathered locations do not simply consist
of a conventional residual transition from soil near the surface to
progressively less weathered rock at depth. Instead, it is very
common to observe repeated residual sequences, suggesting that
earlier flows have undergone varying amounts of weathering before
being covered by new flows.

A distinction between two major types of lava flows has long
been recognized. Pahoehoe lava has a billowy or ropy appearance.
Fresh pahoehoe is very hot and fluid. Its relatively low viscosity
allows it to flow downhill in units no more than a few meters thick.
As the lava cools, a thin smooth outer skin forms first, whereas hot
fluid may continue to flow underneath for some distance. In some
cases, the lava may run out from under a cooled hardened surface
and leave behind a cavity. These cavities, referred to as lava tubes,
are found quite often in older pahoehoe flows. A single eruption
can involve many such flows crisscrossing over one another.

In contrast, ‘a‘ā flows are more viscous and usually carry larger
amounts of gas. The result is thicker units that may range from
3 to 10 m in height or more. ‘A‘ā flows are texturally very different
from pahoehoe ones. They consist of disorganized, jagged, and
spiny basalt blocks and rubble. Hawaiians use the term ‘a‘ā to de-
scribe the pain that is experienced when walking over such flows
without adequate foot protection. An advancing ‘a‘ā flow usually
consists of a viscous molten core flow and solid rubble material that
is transported along on its top. As the lava flow advances, some of
the rubble is rolled over the front and becomes trapped beneath the
core. Eventually the core cools and solidifies as well. The stacking
of multiple flows then leads to alternating thick units of disorgan-
ized rubble, often referred to as clinker, and thinner intervals of
more homogeneous solid rock. Despite the apparent textural con-
trast between pahoehoe and ‘a‘ā lavas, there is no consistent differ-
ence in composition (Macdonald et al. 1983).

General Site Conditions and Geophysical Surveying

Five major volcanoes have at one time or another contributed to the
growth of the Big Island: Mauna Kea, Kohala, Hualalai, Mauna
Loa, and Kilauea. Of these, only the last three are considered either
active or nominally dormant. Hualalai last erupted in 1801 and
Mauna Loa in 1985. Kilauea has been erupting continuously since
1983. The Kealakaha Bridge is located on the northeastern slope of
Mauna Kea’s extinct shield. The rocks at the study site are part of
the Hamakua formation and consist primarily of alkalic basalt, ap-
proximately 60,000 to 200,000 years old (Wolfe and Morris 1996).
A thin layer of ash material, known as Pahala ash, is found in the
upper few feet throughout the area.

Mauna Kea’s Hamakua Coast is an excellent example of the
effect of microclimate on erosion. Abundant trade wind rains
and warm temperatures have resulted in extensive chemical weath-
ering of the upper lava flows. Numerous deep and narrow erosional
gulches cut into the gentle slope that descends from Mauna Kea
(Fig. 1). All these changes have occurred rather rapidly, which
is in marked contrast to the drier leeward side of Mauna Kea where
significantly less weathering has taken place. The Kealakaha
Bridge crosses a small stream of the same name. The gulch beneath
is 45 m deep and 140 m wide, although it becomes much deeper
further toward the ocean. Erosion has exposed layer upon layer of
pahoehoe and ‘a‘ā flows more or less parallel to the ground surface
and dipping at approximately 6° in the direction of the coastline.
Weathering extends deeply into the subsurface as a result of down-
ward infiltration of rainfall, but also because of downhill seepage
flows through permeable clinker and fractured rock zones.

Chemical weathering processes, including oxidation, hydration,
hydrolysis, carbonation, cation exchange, and solution, are all im-
portant in the decomposition of Hawaiian rocks. The primary
agents are oxygen from the air, water from rainfall, and carbon di-
oxide from vegetation. Carbonic and humic acids work to break
down the original minerals in the basaltic rock, chiefly plagioclase
(albite and anorthite), pyroxene, and olivine. The main products of
the decomposition are sodium, calcium, and magnesium carbon-
ates, which are soluble and are readily carried away by water,
and insoluble components left behind that include kaolinite, numer-
ous ferrous oxides, various amounts of amorphous silica (SiO2),
and occasionally gibbsite. Among the residual oxides are decom-
posed products such as hematite, magnetite, and ilmenite (Mitchell
and Soga 2005; Macdonald et al. 1983).

Of particular interest to this study were the approach flanks to
the old and new bridges. To gain a better understanding of the site
conditions, three seismic survey lines were laid out as shown in
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Fig. 2. Seismic line 1 (SL1) and SL2 were placed along the side of
the road and line SL3 was located somewhat below the top of the
gulch, along the Waimea (northwest) side of the bridge and approx-
imately parallel to the stream. Geophysical surveying consisted of
seismic refraction and multichannel analysis of surface waves
(MASW). The MASW method records seismic surface waves gen-
erated from a variety of sources along a string of surface receivers.
Measured travel times, and hence propagation velocities, are pro-
portional to the stiffness of the subsurface materials and can be
processed to yield the variation of shear-wave velocity below
the surveyed area. In the active mode, energy is generated in a de-
liberate manner by dropping a sledgehammer on a metal plate at
ground surface, for example. Sources and receivers are usually
arranged in line. In the passive mode, energy is collected from mis-
cellaneous sources such as road or air traffic. A common passive
arrangement uses a receiver string deployed along the side of a road
to collect the energy produced by moving traffic. The data from
both active and passive sources can then be combined to extend
the effective depth of the survey. This is precisely what was done
at the Kealakaha Bridge site for lines SL1 and SL2, whereas for
SL3 only active data was collected. The maximum depth of inves-
tigation in active MASW surveys is typically limited to 10 to 30 m,
depending on subsurface conditions and the type of source (Park
et al. 1999). The combined active-passive method at the study site
yielded maximum penetration of slightly over 30 m.

The string of receivers consisted of 48 low-frequency geo-
phones spaced 1 m apart. The receivers were advanced along each
survey line for a total coverage of 95 m along lines SL1 and SL2,
and 42 m along line SL3. Active energy was generated with a 5.2-
kg sledgehammer and passive energy was recorded from oncoming

traffic along Route 19 during 30-second time intervals. Overlap-
ping shot points were used to provide refraction data along the
length of each of the three surveys.

The seismic and MASW data was processed and modeled by
using conventional methods. The first arrival time data for each
of the geophones was input into the program RAYFRACT
(Intelligent Resources, Inc.) to estimate velocity-depth models
for each line. Initial models were further refined by using the Wave-
path Eikonal tomographic inversion method with 200 iterations.
The best-fit models were gridded and contoured. The resulting
compressional wave velocity profiles for lines SL1, SL2, and
SL3 are shown in Figs. 3–5, respectively. Processing of the MASW
data made use of the program SurfSeis (Kansas Geological
Service). This involved a series of specialized processing sequences
to prepare dispersion curves yielding phase velocity versus fre-
quency. Dispersion curves were in turn inverted for an estimate
of preliminary shear-wave velocities. These profiles were compared
to the compressional wave velocities in Figs. 3–5 to refine the
modeling parameters and then improve the shear-wave velocities.
A similar approach was used to process the passive data, although
the dispersion imaging process is slightly different to account for
differences in the location and nature of the traffic source. Final
processing combined both active and passive MASW results to
yield the shear-wave velocity profiles shown in Figs. 6–8. It is
estimated that the velocities are accurate within �10% in the upper
15 m, and slightly less below that depth. The deeper portions of the
compressional wave profiles show velocities in excess of
3;500 m=s. Because these occur near the lower limits of the
model space, they need to be viewed with caution and may not
be realistic.

Fig. 2. Seismic lines and sampling locations relative to old Kealakaha bridge and new bridge alignment (satellite image courtesy of DigitalGlobe,
©2010 Google)
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Stratigraphy and Geotechnical Characteristics of
Soil Profile

The locations surveyed and drilled represent successive ‘a‘ā flow
deposits, as indicated by the highly disorganized and inhomo-
geneous nature of the soil and rock materials that could be observed
along the steep walls of the gulch. A number of borings were drilled
near these survey lines (Geolabs, Inc. 2001) and they help to delin-
eate the basic subsurface conditions at the site. Borings B1 and B2
were located within a few meters of line SL1, adjacent to cross
section A-A in Figs. 3 and 6 (also refer to Fig. 2). Boring records
and observation of exposed grading cuts were used to assess the
vertical distribution of soils and rock at section A-A. The deduced

stratigraphy at this location, along with velocities determined from
geophysical surveying, is summarized in Fig. 9.

Given the interest in strong-motion propagation through surface
layers, it is instructive to view the subsurface materials in terms of
the earthquake site-classification provisions contained in the
International Building Code (IBC Table 1613.5.2; International
Code Council 2009), and also in terms of the widely used Deere
and Patton tropical residual soil-classification system for igneous
rocks (Deere and Patton 1971). The latter has been adapted for
residual profiles as they are found in the Hawaiian Islands and
is shown in Fig. 10. A broad correspondence exists between
IBC site classes and weathering horizons as indicated by the links
shown between the two systems.
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At location A-A, the upper 5.2 m consist of clayey silt of high
plasticity (MH) with occasional larger fractions that range from
sand to cobbles and boulders (Fig. 9). This represents the IA to
IB horizon in the Deere and Patton (1971) system and consists
of fully, or nearly fully, decomposed matrix residual soil. Where
ash is mixed in, soils tend to have elevated water contents and plas-
tic limits. Shear-wave velocities are less than 183 m=s, correspond-
ing to IBC site class E.

The fully destructured upper soil is followed by saprolite be-
tween depths of 5.2 and 15.2 m. Saprolite represents basalt lava
that has been thoroughly weathered but that retains relic rock struc-
tures. In Hawaii it is often mottled from the accumulation of oxides
and various leaching products. It may also retain the vesicular ap-
pearance of the parent rock. That is indeed the case for this interval,
which corresponds to Horizon IC in the Deere and Patton (1971)
system. Shear-wave velocities and standard penetration numbers
indicate that the saprolite is associated with IBC site class D.
The material in this interval is not uniform, and there are numerous

boulders and less weathered zones throughout. Nonetheless, shear-
wave velocities do not increase much throughout the saprolite zone,
at least not when compared to the weathered rock layer beneath.

The extent of chemical weathering in shallow saprolite was ex-
amined by conducting quantitative X-ray diffraction analyses on
two specimens at depths of 3 and 5 m. Although taken from a
cut in an access road on the opposite bank of the gulch, near seismic
line L2 (Fig. 2), the saprolite tested is quite similar to that found
along line L1 below 5.2 m. The results are shown in Table 1 and
indicate that all the plagioclase, pyroxene, and olivine of the parent
basalt have been decomposed into various oxides, especially mag-
netite and hematite, and halloysite and a smaller amount of smec-
tite. In other words, the saprolite reflects profound weathering
despite the relatively young age of the parent lava flows. Gradation
and plastic limits indicate that the saprolite breaks down to high
plasticity silt (MH), with increasing sand fraction with depth
(Fig. 11). The halloysite is of the nonhydrated type with crystal
lattice spacings nearly the same as for kaolinite. Nonhydrated
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halloysite shares many characteristics with kaolinite in terms of
moisture content and plasticity, for example. Specific gravity for
the residual saprolite is larger than for common clay minerals be-
cause of the accumulation of the heavier ferrous oxides. Hydrated
halloysite, which is more abundant in ash deposits closer to the
town of Hilo, is usually found at very high moisture contents
and exhibits very large plastic limits. Upon drying in an oven, such
ash soils change irreversibly and take on the texture of sand.

One CU triaxial test was conducted on a sample of the saprolite
from a depth of 3 m. The specimen was obtained from the same

location as the mineralogy samples and was of very good quality
(further undisturbed sampling was unsuccessful). A confining
stress of 70 kPa was used, which is in line with the estimated over-
burden stress. The results indicate a peak deviatoric stress at 8.1%
axial strain, followed by mild softening. An effective peak friction
angle of 33° can be estimated, assuming no cohesion intercept. Of
course, a single triaxial test is insufficient to properly characterize
the strength of the saprolite at the study site. On the other hand, this
friction value agrees with triaxial test results conducted on similar
soil some 6 km away near the town of Paauilo, which also indicate a
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friction angle of 33° (Hirata & Associates, Inc. 2001). Lumb (1975)
reports a friction angle of 36° for volcanic saprolite from Hong
Kong, whereas Fredlund (1987) indicates a value of 33°, also
for Hong Kong saprolite. Tests conducted on B and C horizon soils
from the islands of Oahu and Kauai suggest a wider range of val-
ues, from as little as 28° to upward of 44° (Tuncer and Lohnes 1977;
Hirata & Associates, Inc. 2003). A wide range of friction values

(and cohesion intercepts) is not surprising given that the strength
of saprolites is very dependent on weathering, cementation, mois-
ture content, saturation, and the presence of relict joints (Mitchell
and Sitar 1982), all of which can be expected to vary substantially
throughout Hawaii’s geology and microclimate regions. In general,
our experience indicates that the strength of Hawaiian saprolites
is significantly higher than of most fully weathered, normally
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Fig. 9. Soil and rock profile at section A-A in seismic line SL-1 (refer to Fig. 10 for a description of soil horizons and IBC site classes)

IBC
Site Class

Soil Profile
Name

Shear Wave
Velocity, Vs N-Field

F - N/A -

E Soft soil
Vs < 183 m/s

(Vs < 600 ft/s)
N < 15

D Stiff soil
183 ≤ Vs ≤ 366 m/s

(600 ≤ Vs ≤ 1,200 ft/s)
15 ≤ N ≤ 50

C
Very dense soil and

soft rock
366 ≤ Vs ≤ 762 m/s

(1,200 ≤ Vs ≤ 2,500 ft/s)
N > 50

B Rock
762 ≤ Vs ≤ 1,524 m/s

(2,500 ≤ Vs ≤ 5,000 ft/s)
N/A

A Hard rock Vs > 1,524 m/s
(Vs > 5,000 ft/s) N/A

1Deere and Patton (1971) 2Adapted to Hawaii soils from Deere and Patton (1971) and Lambe (1996)

Weathering Profile for Hawaiian Lava Flows

Zone1 Description2 RQD3 N-Field3

I, Residual soil
IA, A Horizon Topsoil, roots, organic material; zone of intense 

leaching N/A <15

IB, B Horizon Silt- and clay-rich; accumulation of Fe, Al, and Si; 
may be lightly cemented; little or no soil structure

N/A 10-20

IC, C Horizon
      (saprolite)

Relict rock structure; breaks down easily to 
silt/clay/some sand; mottling, stains; some highly 
weathered core stones

0 or N/A 20-40

II, Weathered rock
IIA, Transition Highly variable, soil-like to rock-like; 

silty/sandy/gravelly residue; extensive staining;
spheroidal and vesicular weathering of core stones

Generally
0-50

30-50

IIB, Partially 
weathered rock

Rock-like soft to hard rock; difficult to break 
down by hand; variable amounts of vesicles and 
fracturing; some alteration of plagioclase, 
pyroxene and olivine

Generally
50-75

>40 or N/A

III,Unweathered rock No stains or weathering, although unaltered 
vesicles may be present; light-weight to very 
dense; often referred to as ‘blue rock’

Generally
>75

N/A

3Approximate ranges for Hawaii soils N/A - Not Applicable
RQD - Rock Quality Designation N-Field - Standard Penetration Resistance

4International Code Council (2009)

2009 International Building Code Seismic Site Classes4

Fig. 10. Relationship between weathering profile for unit lava flows and IBC site classes
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consolidated alluvial fine-grained soils, for example, kaolinite or
halloysite, which typically have friction angles on the order of
20 to 28° (Terzaghi et al. 1996; Mitchell and Soga 2005).

Higher strength for partially weathered saprolite is attributed vary-
ingly to remnant rock strength, the presence of coarser grains, ce-
mentation from leaching agents such as oxides and organic
compounds, partial saturation, and the presence of certain structural
inhomogeneities.

At 15.2 m, the saprolite gives way to weathered rock. The de-
gree of decomposition varies widely from extensively weathered
rock, similar in many respects to saprolite, to very hard and dense

Saprolite
Depth = 3 m

Saprolite
Depth = 5 m

1 0.1 0.01 0.001
Grain size (mm)
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t F
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Fig. 11. Gradation of saprolite after breaking down to soil size (hydro-
meter method)

Fig. 12. Unweathered core of ‘a‘ā lava flow protruding from beneath
abutment of old bridge (image courtesy of the authors)

Table 2. Unit Weight and Absorption Properties of Rock Samples

ASTM C127

Sample

CoreLok
unit weight
(kN=m3)

OD unit
weight
(kN=m3)

SSD unit
weight
(kN=m3)

Apparent unit
weight
(kN=m3)

Absorption
(%)

5C-2 14.2 14.6 15.2 15.6 4.47

5C-1 14.1 14.5 15.1 15.5 4.45

5B 15.6 15.6 16.2 16.6 3.76

5A 15.7 15.6 17.0 18.2 8.81

2 15.9 15.9 16.7 17.3 4.99

4A 16.2 16.3 17.3 18.2 6.13

3A 17.0 17.2 17.9 18.4 3.70

1 17.3 17.4 18.5 19.5 6.01

4B 19.3 19.7 20.5 21.5 4.25

3B 19.7 20.1 20.9 21.8 3.72

6 21.0 21.2 22.0 23.0 3.63

KR2 24.6 25.4 26.3 28.0 3.53

7C 24.6 25.8 26.6 28.0 2.93

8D 23.9 26.4 26.8 27.6 1.64

8E 24.2 26.5 26.9 27.8 1.78

7A 25.2 26.4 26.9 27.8 1.82

7B 25.6 25.6 26.2 27.1 2.07

8C 25.4 26.0 26.6 27.6 2.13

8B 25.6 26.7 27.2 28.1 1.75

8A 25.4 26.3 26.8 27.7 1.87

7D 25.8 26.9 27.4 28.3 1.85

KR1 25.8 26.8 27.2 28.1 1.73

Table 1. Saprolite Soil Properties

Saprolite (3 m) Saprolite (5 m)

Mineralogy (%)

Ilmenite 14

FeTiO3

Kennedyite 10

Fe2MgTi3O10

Magnetite 5 30

alpha� Fe3O4

Hematite 28

alpha� Fe2O4

Goethite 3 5

alpha� FeOOH

Akaganeite 4

beta� FeOOH

Halloysite (nonhydrated) 48 48

Al2Si2O5ðOHÞ4
Mixed-layered illite/smectite 2 3

K0:5Al2ðSi;AlÞ4O10ðOHÞ2 · 2H2O

Water content & plasticity (%)

Water content 77 71

Liquid limit 77 71

Plastic limit 59 62

Gradation (%)

Sand 12 25

Fines 88 75

Weight

Specific gravity 3.15 3.07

Effective strength

Friction angle (Degrees) 33

Cohesion (kPa) 0
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rock requiring slow drilling [Horizons IIA and IIB in Deere and
Patton’s (1971) classification system]. Shear-wave velocities range
from 366 to 762 m=s, corresponding to IBC seismic class C. Most
rock zones are highly fractured with rock quality designation
(RQD) that can be quite low. The transition from saprolite to weath-
ered rock is gradual and usually difficult to discern from a cursory
inspection of borehole samples alone. On the other hand, an exami-
nation of Fig. 6 indicates that the change to Horizon IIA and seis-
mic site class C is accompanied by a rapid increase in the rate at
which shear-wave velocity increases with depth. The contours be-
yond 366 m=s are spaced much closer together.

The layer beneath the weathered rock interval, starting at a depth
of 25.3 m, is a good example of the complexity in Hawaiian
residual soil profiles. Here the intensity of weathering is not simply
a function of depth, but instead reflects complex and variable
processes of lava-flow deposition and the abrupt truncation of
weathering horizons. The nearby borings indicate a generally
weaker rock in terms of penetration resistance and RQD values.
The decomposed rock breaks down to sandier, less plastic soil
(SP, SL, ML, some MH) than at shallower depths. It is possible
that this deeper interval represents an older flow that was allowed
to weather for only a limited amount of time before it was covered
by a more recent flow. The fractured and generally permeable
nature of the deeper ‘a‘ā deposit may have allowed weathering
to continue to the present as a result of seepage flows. Borehole

samples at this depth were definitely moist. Chemical weathering
at depth is presumed to occur with less organic acids produced by
surface vegetation.

Shear-wave velocities in this zone continue to increase, albeit
with some lower velocity zones such as the one at elevation

Table 3. Correlation between Unit Weights and Absorption (linear
R-coefficient)

CoreLok unit
weight

OD unit
weight

SSD unit
weight

Apparent unit
weight

Absorption 0.80 — 0.79 0.77

Table 4. Summary of Velocity and Strength Measurements

ASTM C127 ASTM D2845 ASTM D5731 ASTM D7012

Sample
OD unit weight

(kN=m3)
Absorption

(%)
P-wave velocity

(m=s)
S-wave velocity

(m=s)
Young’s modulus

(kPa)
Poisson’s
ratio

Point load index
(kPa)

Compressive triaxial
strength (kPa)

5C-1 14.5 4.45 2,101 1,184 5,251,000 0.27 1,227 20,900

5B 15.6 3.76 2,215 1,240 6,220,000 0.27 3,903 30,300

5A 15.6 8.81 1,689 958 3,686,000 0.26 807 24,300

3A 17.2 3.70 2,167 1,208 6,519,000 0.27 745 45,700

4B 19.7 4.25 1,612a 1,251 — — 3,620 19,300

KR2 25.4 3.53 2,656 1,429 13,705,000 0.30 1,255 57,000

KR1 26.8 1.73 2,898 1,495 16,107,000 0.32 3,710 92,500
aQuestionable P-wave velocity (refer also to Table 6 and Fig. 15).

Table 5. Correlation between Index Parameters and Velocity (linear
R-coefficient)

OD unit
weight

CoreLok
unit

weight

SSD
unit

weight

Apparent
unit

weight Absorption

Point
load
index

P-wave velocity

(all data)

0.73 0.71 0.70 0.67 0.73 0.16

P-wave velocity

(excluding 4B)a
0.89 0.88 0.87 0.84 0.88 0.52

S-wave velocity 0.85 0.84 0.82 0.79 0.91 0.46
aSample 4B yielded a questionable P-wave velocity (refer to Table 6
and Fig. 15).

(a)

(b)

Fig. 14. Velocity as a function of index parameters: (a) P-wave velo-
city; (b) S-wave velocity

Fig. 13. OD unit weight as a function of absorption

19

20
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262 m (Figs. 6 and 9). Although the compressional wave-velocity
profile at section A-A is missing at this depth (Fig. 3), results fur-
ther to the southeast along line SL1 suggest that velocities increase
dramatically with depth once they reach a value of 1;600 m=s. Val-
ues quickly approach those for very dense, unweathered basalt
(Bonner and Shock 1981; Manghnani and Woollard 1968). Such
higher velocities, well in excess of 3;000 m=s, are associated with
the type of very dense, low-porosity rock that was encountered dur-
ing deep drilling for construction of the new bridge foundations. In
any case, the accuracy of the velocities near the bottom of the con-
toured plots needs to be viewed with caution because of the inher-
ent limitations in the seismic models, as discussed previously.

Rock Testing

The downhill area adjacent to the old Kealakaha Bridge was graded
on the Waimea side prior to the authors’ field work in preparation
for construction of one of the piers for the new bridge. The grading
revealed a distinct layer of nearly unweathered but moderately frac-

Table 6. Summary of Triaxial Test Results for Selected Basalt Rock Samples (confining stress = 1,500 kPa)

Sample Stress range (kPa) Young’s modulusa (kPa) Poisson’s ratio Compressive strength (kPa) Failure axial strain (%)

5C-1

0–6,900 27,180,000 0.20

6,900–13,800 25,056,000 0.17

13,800–20,700 24,925,000 0.33

20,900 0.08

5B

6,900–13,800 33,358,000 0.21

13,800–20,700 32,372,000 0.26

20,700–27,600 29,262,000 0.30

30,300 0.10

5A

0–6,900 15,562,000 0.17

6,900–13,800 15,100,000 0.19

13,800–20,700 12,252,000 0.31

24,300 0.18

3A

0–13,800 36,440,000 0.26

13,800–27,600 40,143,000 0.38

27,600–41,400 34,158,000 0.36

45,700 0.13

4B
b b b

19,300 0.61

KR2

6,900–20,700 29,304,000 0.11

20,700–34,500 23,009,000 0.09

34,500–48,300 16,203,000 0.13

57,000 0.29

KR1

13,800–27,600 63,275,000 0.18

27,600–41,400 51,526,000 0.14

41,400–55,200 41,163,000 0.10

55,200–69,000 31,669,000 0.10

69,000–82,800 40,322,000 0.32

92,500 0.19
aValues are calculated by using the tangent to the line in the stress range specified.
bYoung’s modulus and Poisson’s ratio could not be determined from the strain gauge data.

Fig. 15. Triaxial stress-strain test results for rock specimens
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tured rock protruding from beneath the abutment of the old bridge.
This rock interval, approximately 3 m thick, represents the core of
an ‘a‘ā flow with sharply different clinker material above and below
it (Figs. 2 and 12). The unweathered core also appears in the bor-
ings drilled at the site prior to grading. It occurs near the bottom of
the weathered basalt unit in Fig. 9, at an elevation of approximately
262 m. This corresponds to a zone of lower shear-wave velocity
intersected by cross section A-A just above the 762 m=s velocity
contour in Fig. 6. The lower velocity is presumed to correspond to a
noticeably looser material observed in the field immediately above

the rock core (Fig. 12). The authors proceeded to subsample this
unit to examine the acoustic and strength properties of rock that
appeared to be largely unaltered by chemical weathering. The in-
tention was to obtain values that could be used as upper bounds for
velocities and strength of residual soil and weathered rock materi-
als. The sampling stayed clear of obvious fractures but included
specimens with varying amounts of vesicles and a range of unit
weights. This allowed examining the influence of these variables
on wave propagation, strength, and stiffness properties.

A total of 22 samples, 4 inches in diameter, were cored from this
layer. Each specimen was measured, photographed, and weighed.
Oven dried (OD), saturated surface dry (SSD), and apparent unit
weights, and absorption, were determined in accordance with
ASTM C127. A CoreLok apparatus was also used to obtain the
bulk unit weight for each specimen. This device attempts to over-
come inaccuracies in sample volume measurement by sealing spec-
imens in special bags under vacuum and allowing for the
determination of accurate water displacements in a specially de-
signed chamber. As with any porous material, there may be differ-
ences between the various unit weights, and this is expected to
depend on the amount of vesicles present. Measured values for
all the samples are listed in Table 2. Unit weights vary by as much
as 3:7 kN=m3 for any one specimen. This suggests that when re-
porting values for porous rocks, the type of unit weight should be
indicated, much as it is done for aggregate materials.

The amount of vesicles in basalt can be expressed in terms of
porosity, but it can be measured and characterized more conven-
iently by the amount of water absorption upon submergence. Of
course, vesicles that are effectively isolated are not accounted
for in this way, and therefore the measured values underestimate
the true volume of voids to a certain extent. Nonetheless, the mea-
sured absorption is deemed a useful index to the true porosity of the
rock and can be used for relative comparisons. One would expect
an inverse correspondence between absorption and unit weight be-
cause higher degrees of absorption point to a more porous rock
structure, hence a lower unit weight. This is generally the case,
as for example shown in Fig. 13, although the data is not deemed
sufficient to draw any sort of correlation. The correlation factors for
the various unit weights are not as high as hoped for (Table 3), but
this is not surprising given that the absorption values may not re-
flect the true porosity. Despite this, unit weights appear to be highly
dependent on absorption, or porosity, spanning a range of
12:4 kN=m3 over an absorption range of 4.5%.

A subset of seven samples was selected for further testing.
This included measurement of compressional and shear-wave
velocities with no confinement (ASTM D2845), point load strength
determination (ASTM D5731), and testing for triaxial compres-
sive stress-strain and strength properties at a single confining stress
(ASTM D7012). Pulse velocities were measured prior to confine-
ment and deviatoric loading. They were determined with piezo-
electric transducers mounted at both ends of the cylindrical
specimens and measuring the amount of time needed for transmis-
sion of a pulse from one end to the other. Careful attention was
placed to aligning the transducers properly in accordance with
ASTM D7012.

Shear-wave and compressional wave-velocity measurements,
and derived small-strain elastic stiffnesses and Poisson’s ratios,
are listed in Table 4 for the subset of seven specimens. These veloc-
ities were measured prior to shearing under atmospheric pressure.
The compressional wave velocity for sample 4B is considered to be
rather low, although the reason for this is not clear. In any case, the
velocities in Table 4 are significantly lower than values typically
reported for basalt (Bonner and Schock 1981; Manghnani and
Woollard 1968). Most studies indicate compressional velocities

Table 7. Correlation between Index Parameters and Triaxial Compressive
Strength (linear R-coefficient)

OD Unit
Weight

P-wave
velocitya

S-wave
velocity Absorption

Point load
index

Compressive

strength

0.84 0.89 0.78 0.64 0.21

aSimilar value whether sample 4B is included or not.

Fig. 16. Triaxial compressive strength as a function of index para-
meters
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that start near 3;000 m=s and reach as high as 5;000 m=s. Similarly,
typical reported shear-wave velocities range between approxi-
mately 1;500 m=s and as much as 3;700 m=s. These reported val-
ues are presumably for low-porosity rock and do not account for the
presence of vesicles. Our results indicate that velocities in vesicular
rock can be much lower than normally expected. Lower velocities
reflect a reduced elastic stiffness at ultrasonic strain levels as a re-
sult of the porous rock matrix. From a theoretical perspective, elas-
tic-wave velocities are also a function of density. However, past
measurements on oceanic basalts indicate a poorly defined corre-
spondence and much scatter in the data (Manghnani and Woollard
1968; Nafe and Drake 1968). In contrast, our results indicate a rel-
atively good correspondence. As shown in Table 5 and Fig. 14,
P-wave velocities correlate best with OD unit weight and absorp-
tion, whereas S-wave velocity is remarkably well correlated with
absorption (but also with OD unit weight). Thus simple index
parameters such as bulk density and absorption may be good
indicators of velocity magnitudes in vesicular basalt.

Triaxial tests were conducted to examine the large-strain char-
acteristics of basalt and to assess the effects of vesicles and unit
weight (Table 6; Fig. 15). A consistent and relatively low confining
stress of 1,500 kPa was chosen for all the tests, which represents an
overburden of approximately 60 m. Ideally, a series of tests on iden-
tical specimens should be conducted at various confining stresses in
order to determine Mohr-Coulomb or Hoek-Brown strength param-
eters, but such a suite of samples is difficult to obtain for porous
rock. Instead, a comparison of results using a single confining
stress can still provide insight into stress-strain and compressive
strength behavior as a function of porosity. Point load index tests
were also carried out on companion specimens. Compressive
strengths and Young’s moduli were generally low compared to re-
ported values for generic and oceanic basalts (Gu et al., 2008;
Christaras, 1995; Bauer and Handin, 1983). Only specimens
KR2 and KR1, with the lowest levels of absorption, and hence
vesicles, are considered of medium to high strength. The same
is true for stiffness, with values that are low in comparison to pub-
lished results (Bauer and Handin, 1983). Again, the reason is attrib-
uted to the vesicular nature of the rock samples. With regard to
compressive strength, an acceptable correlation is found with
OD unit weight, but the agreement with absorption is weaker.
On the other hand, compressional wave velocity appears to be a
relatively good index to compressive strength, whereas the point
load index shows increasing strength with increasing index value,
but a rather poor overall correlation (Table 7, Fig. 16). The poor
correlation is not surprising. It has long been recognized that
the point load index test is a notoriously imprecise index to more
comprehensive strength parameters (Brady and Brown 2004), and
this is particularly so for porous, inhomogeneous rock. However,
these trends are on the basis of a set of specimens from a single
location, and the exact relationships could be different depending
on the geologic material.

Young’s modulus values calculated from wave velocities
(Table 4) are smaller than those determined from triaxial shearing
(Table 6). This would appear to be contrary to normal expectations.
However, the presence of vesicles that are large in comparison to
the wavelength of the ultrasonic pulse leads to velocities that are
smaller than for solid rock. Hence elastic parameters calculated
from these velocities will also be lower. This also explains why
seismic velocities observed in the field, which are based on wave
lengths generally larger than field voids and cracks, are higher than
the ultrasonic values. As already noted, the measured compres-
sional and shear-wave velocities in the rock cores are significantly
lower than values reported elsewhere for low-porosity basalt.

Summary

Weathering of oceanic basalt flows in humid tropical environments
can extend to depths easily exceeding 30 m. This is particularly true
where rapid chemical breakdown occurs in tandem with deposition
of fresh flows during episodes of continuing eruption. The lower
part of the Hamakua Coast, which last received new volcanic flows
some 60,000 years ago, has been thoroughly weathered and sup-
ports a lush vegetation. One particular site, adjacent to the Keala-
kaha Gulch, was investigated in connection with a bridge
replacement project. The soil and rock characteristics there were
determined through field geophysical surveys, drilling and labora-
tory testing.

The upper few meters consist of thoroughly decomposed vol-
canic soils rich in halloysite-kaolinite and various ferrous oxides.
The presence of decomposed ash fractions can lead to high mois-
ture contents and plasticity. When that is the case, particularly
closer to the town of Hilo, seismic strong-motion recordings indi-
cate that ground amplification may be greater than expected. These
soils usually correspond to IBC seismic class E (residual horizon IA
to IB). Surface soils transition to saprolite at depth. Shallow sap-
rolite shows signs of extensive weathering, with virtually none of
the parent basalt minerals left intact. Saprolite is quite strong owing
to cementation and suction stresses, and vertical cuts remain stable
over long periods of time. Saprolite breaks down with relative ease
to high-plasticity MH soil near the surface and to coarser sand-silt
combinations at depth. Velocities and penetration values suggest
that saprolite corresponds to IBC seismic class D and residual hori-
zon IC. Residual core stones are quite common. Weathered rock
beneath the saprolite is variable in texture, fracturing, and degree
of weathering, partly as a result of the type of lava flow responsible
for its deposition. Shear-wave velocities are typically above
366 m=s and thus weathered rock corresponds to IBC site class C.
The transition from saprolite to weathered rock, and then to intact
rock, is gradual. It is not uncommon to find relatively competent
rock followed by more heavily weathered intervals of saprolite,
rubble, and soil. Drilling for the piers during construction of the
new bridge indicates that hard solid rock (IBC site class A) may
begin at depths on the order of 35 m or more.

Relatively unweathered basalt, from which the above weathered
materials were formed, is often vesicular in nature. S-wave veloc-
ities measured on representative samples, all less than 1;500 m=s,
indicate that vesicular unweathered rock of this type is of IBC seis-
mic class B. Presumably then hard rock of IBC class Awould have
to be free, or nearly free, of vesicles. The author’s results indicate
that elastic and inelastic properties of vesicular rock, such as unit
weight, compressional and shear-wave velocities, stiffness and
strength, can deviate significantly from values that are commonly
assumed for IBC class A nonporous basalt. Unit weight and absorp-
tion are found to be somewhat reliable measures of these properties.
Unit weight is quite sensitive to the amount of vesicles present, as
measured by the degree of water absorption, although the data are
not sufficient to draw any specific correlation between the varia-
bles. Ultrasonic velocities decrease with an increase in the amount
of vesicles. In turn, unit weight and P-wave velocity are positively
correlated with triaxial compressive strength. Point load index, on
the other hand, is found to be a poor measure of vesicular rock
strength.
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